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Abstract The performance of branch-and-bound algorithms for deterministic global opti-
mization is strongly dependent on the ability to construct tight and rapidly convergent schemes
of lower bounds. One metric of the efficiency of a branch-and-bound algorithm is the con-
vergence order of its bounding scheme. This article develops a notion of convergence order
for lower bounding schemes for constrained problems, and defines the convergence order of
convex relaxation-based and Lagrangian dual-based lower bounding schemes. It is shown
that full-space convex relaxation-based lower bounding schemes can achieve first-order con-
vergence under mild assumptions. Furthermore, such schemes can achieve second-order
convergence at KKT points, at Slater points, and at infeasible points when second-order
pointwise convergent schemes of relaxations are used. Lagrangian dual-based full-space
lower bounding schemes are shown to have at least as high a convergence order as con-
vex relaxation-based full-space lower bounding schemes. Additionally, it is shown that
Lagrangian dual-based full-space lower bounding schemes achieve first-order convergence
even when the dual problem is not solved to optimality. The convergence order of some
widely-applicable reduced-space lower bounding schemes is also analyzed, and it is shown
that such schemes can achieve first-order convergence under suitable assumptions. Further-
more, such schemes can achieve second-order convergence at KKT points, at unconstrained
points in the reduced-space, and at infeasible points under suitable assumptions when the
problem exhibits a specific separable structure. The importance of constraint propagation
techniques in boosting the convergence order of reduced-space lower bounding schemes
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(and helping mitigate clustering in the process) for problems which do not possess such a
structure is demonstrated.
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1 Introduction

Global optimization has found widespread applications in various areas of engineering and
the sciences [11]. Deterministic global optimization algorithms attempt to determine an
approximate optimal solution within a specified tolerance and terminate with a certificate of
its optimality in finite time [13]. While efficient algorithms are known for classes of con-
vex optimization problems [4], no such algorithms are currently known for most classes
of nonconvex problems. Deterministic global optimization algorithms for nonconvex prob-
lems usually involve the concept of partitioning the domain of (‘branching on’) the decision
variables [13]. The performance of branch-and-bound algorithms for deterministic global
optimization is strongly dependent on the ability to construct tight and rapidly convergent
relaxations of nonconvex functions.

Since the worst-case running time of all known branch-and-bound algorithms is expo-
nential in the dimension of the variables partitioned, it may be advantageous to utilize
‘reduced-space’ algorithms which only require branching on a subset of the variables
(as opposed to ‘full-space’ branch-and-bound algorithms which may branch on all of the
variables) to guarantee convergence. Despite the potential advantages of reduced-space algo-
rithms for nonconvex problems [3,9,10,37], such methods have not been widely adopted in
the literature and in commercial software. One potential reason is thatmost widely-applicable
reduced-space branch-and-bound algorithms often do not seem to exhibit favorable con-
vergence rates compared to their full-space counterparts. The convergence properties of
reduced-space branch-and-bound algorithms have not been thoroughly investigated, although
some progress has been made in this direction [8,37]. The reader is directed to the work of
Epperly and Pistikopoulos [10] for a survey of reduced-space branch-and-bound algorithms.

One metric of the efficiency of a deterministic branch-and-bound algorithm is the order
of convergence of its bounding scheme, which, for the case of unconstrained optimization,
compares the rate of convergence of an estimated range of a function to its true range [22].
Recently, Bompadre and coworkers [5,6] developed the notions of Hausdorff and pointwise
convergence orders of bounding schemes and established sharp rules for the propagation of
convergence orders of bounding schemes constructed using McCormick [20], Taylor [24],
and McCormick-Taylor [27] models. In addition, they showed that if a function is twice
continuously differentiable, the scheme of relaxations corresponding to its envelopes is at
least second-order pointwise convergent which, in turn, implies Hausdorff convergence of
at least second-order. Najman and Mitsos [23] used the framework developed in [5,6] to
establish sharp rules for the propagation of convergence orders of multivariate McCormick
relaxations [36]. Khan and coworkers [17] developed a continuously differentiable variant
of McCormick relaxations [20,36], and established second-order pointwise convergence of
schemes of the differentiable McCormick relaxations for twice continuously differentiable
functions. Also note the definition of rate of convergence of bounding schemes for geometric
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branch-and-bound methods proposed by Schöbel and Scholz [29], and the proof of second-
order Hausdorff convergence of centered forms in [18,30]. Establishing that a scheme of
relaxations is at least second-order Hausdorff convergent is important frommany viewpoints,
notably in mitigating the so-called cluster effect in unconstrained global optimization [7,38].
Recently, the authors of this work have analyzed the cluster problem for constrained global
optimization and determined that, under certain conditions, first-order convergence of the
lower bounding scheme may be sufficient to avoid the cluster problem at constrained min-
ima [15]. However, an analysis of convergence order for constrained problems is currently
lacking.

In this work, we investigate the convergence orders of some full-space and reduced-
space deterministic branch-and-bound algorithms by extending the convergence analysis
of Bompadre and coworkers to constrained problems. Specifically, we propose a defini-
tion of convergence order for lower bounding schemes, analyze the convergence orders of
commonly-used full-space lower bounding schemes, and analyze the convergence orders of
somewidely-applicable reduced-space lower bounding schemes in the literature. Throughout
this work, we tacitly assume that a branch-and-bound algorithm utilizes efficient heuristics
for finding feasible points which determine a global optimal solution early on in the branch-
and-bound tree (if one exists).

This paper is organized as follows. Section 2 formulates the problem of interest, and pro-
vides some background definitions. Section 3 develops the notion of convergence order of
a lower bounding scheme, and Sect. 4 provides some results on the convergence orders of
commonly-used full-space lower bounding schemes. Section 5 lists some widely-applicable
reduced-space lower bounding schemes in the literature, provides some results on their con-
vergence orders, and highlights the importance of constraint propagation in reduced-space
branch-and-bound algorithms. Finally, Sect. 6 lists the conclusions and some avenues for
future work.

2 Problem formulation and background

Consider the problem

min
x,y

f (x, y) (P)

s.t. g(x, y) ≤ 0,

h(x, y) = 0,

x ∈ X, y ∈ Y,

where X ⊂ R
nx and Y ⊂ R

ny are nonempty convex sets, f : X × Y → R and g : X × Y →
R
mI are partially convex with respect to x, i.e., f (·, y) and g(·, y) are convex on X for each

y ∈ Y,h : X × Y → R
mE is affine with respect to x, i.e., h(·, y) is affine on X for each

y ∈ Y , and 0 denotes a vector of zeros of appropriate dimension. The following assumption
will be made throughout this work.

Assumption 1 The sets X and Y are compact, and the functions f, g, and h are continuous
on X × Y .

When the dimension ny of the Y -space corresponding to the nonconvexities in the func-
tions in Problem (P) is significantly smaller than the dimension nx of the X -space, it may be
computationally advantageous to partition only the Y -space during the course of a branch-
and-bound algorithm (assuming, of course, that the reduced-space algorithm is guaranteed to
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converge). However, the convergence rate of a reduced-space branch-and-bound algorithm
may be different compared to a similar full-space algorithm, which makes it difficult to
judge a priori whether using a reduced-space branch-and-bound approach would be advanta-
geous. Beforewe analyze the convergence orders of some full-space and reduced-space lower
bounding schemes in the literature, we need to define formally the notion of convergence
order for constrained problems. For this purpose, we review some relevant definitions [5,6].

Throughout this work, we use IZ to denote the set of nonempty, closed, and bounded
interval subsets of Z ⊂ R

n,R+ and R− to respectively denote the sets of nonnegative and
nonpositive reals, z j to denote the j th component of a vector z, (z1, z2, . . . , zn) to denote
a vector z ∈ R

n with components z1, z2, . . . , zn ∈ R, (v,w) to denote the column vector

[vT wT]T corresponding to (column) vectors v and w, ‖z‖ to denote the Euclidean norm of a

vector z ∈ R
n,

[
g
h

]
to denote a vector-valued function with domain Z and codomain R

m+n

corresponding to vector-valued functions g : Z → R
m and h : Z → R

n , conv(S) to denote
the convex hull of a set S ⊂ R

n , and int(S) to denote the interior of a set S ⊂ R
n .

Definition 1 (Width of an interval) Let Z = [zL1 , zU1 ] × · · · × [zLn , zUn ] be an element of IRn .
The width of Z , denoted by w(Z), is given by

w(Z) := max
i=1,...,n

(
zUi − zLi

)
.

Definition 2 (Distance between two sets) Let Z , V ⊂ R
n . The distance between Z and V ,

denoted by d(Z , V ), is given by

d(Z , V ) := inf
z∈Z ,

v∈V
‖z − v‖.

Note that the above definition of distance does not define a metric; however, it will prove
useful in defining ameasure of infeasibility for points in X×Y for Problem (P). The following
result holds.

Lemma 1 Let z, v ∈ R
n, and let K ⊂ R

n be a convex cone. Then

d({z}, K ) − d({v}, K ) ≤ d({z − v}, K ).

Proof See [31]. ��
Corollary 1 Let z, v ∈ R

m+n. Then

d({z},Rm− × {0}) − d({v},Rm− × {0}) ≤ d({z − v},Rm− × {0}).
Proof This result is a direct consequence of Lemma 1. ��
Lemma 2 All norms on R

n are equivalent. Specifically, if ‖·‖p and ‖·‖q are two norms in
R
n for any p, q ∈ N ∪ {+∞} with p �= q, then there exist constants c1, c2 ∈ R+ such that

c1‖z‖p ≤ ‖z‖q ≤ c2‖z‖p, ∀z ∈ R
n. Furthermore, for (p, q) = (1, 2), c2 = 1 provides a

valid upper bound and for (p, q) = (+∞, 2), c2 = √
n provides a valid upper bound.

Proof For the first part of the lemma, see, for instance, [28, Theorem 4.2]. The second part
of the lemma follows from the inequalities

‖z‖22 =
n∑

i=1

z2i ≤
n∑

i=1

z2i +
n∑

i=1

n∑
j=i+1

2|zi ||z j | = ‖z‖21
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and

‖z‖22 =
n∑

i=1

z2i ≤ n max
i=1,...,n

z2i = n‖z‖2∞

for any z ∈ R
n . ��

Definition 3 (Lipschitz continuous function) Let Z ⊂ R
n . A function f : Z → R is said to

be Lipschitz continuous with Lipschitz constant M ≥ 0 if

| f (z1) − f (z2)| ≤ M‖z1 − z2‖, ∀z1, z2 ∈ Z .

Remark 1 Locally Lipschitz continuous functions are Lipschitz continuous on compact sub-
sets of their domains. Therefore, the assumption that the functions f, g, and h in Problem (P)
are Lipschitz continuous on X × Y is not particularly strong when Assumption 1 is made.

Definition 4 (Hausdorff metric) Let X = [xL, xU] and Y = [yL, yU] be two intervals in IR.
The Hausdorff metric between X and Y , denoted by dH (X, Y ), is given by

dH (X, Y ) = max{|xL − yL|, |xU − yU|} = max

{
max
x∈X min

y∈Y |x − y|,max
y∈Y min

x∈X |x − y|
}

.

Definition 5 (Inclusion function) Let V ⊂ R
n and suppose f : V → R

m is continuous. For
any Z ⊂ V , let f(Z) denote the image of Z under f . A mapping F : IV → IR

m is called an
inclusion function for f on IV if, for every Z ∈ IV , we have f(Z) ⊂ F(Z).

Definition 6 (Range order) Let V ⊂ R
n be a bounded set. Let f : V → R be continuous,

and let F be an inclusion function for f on IV . The inclusion function F is said to have
range of order α > 0 at a point v ∈ V if there exists τ ≥ 0 such that for every Z ∈ IV with
v ∈ Z ,

w(F(Z)) ≤ τw(Z)α.

The function f itself is said to have a range of order α > 0 at v ∈ V if its image f has range
of order α at v. The functions F and f are said to have ranges of order α > 0 on V if they
have ranges of order (at least) α at each v ∈ V , with the constant τ independent of v.

The reader is directed to Remark 3 for a discussion on the assumption that the set V in the
above definition be bounded. Since the convergence order analysis in this work is asymptotic
in nature (see Remark 4 and Lemma 5), we will need the following asymptotic notations.

Definition 7 (Big O and little o notations) Let Z ⊂ R, f : Z → R, and g : Z → R. We
say that f (z) = O(g(z)) as z → z̄ ∈ Z if and only if there exist δ, M > 0 such that

| f (z)| ≤ M |g(z)|, ∀z ∈ Z with |z − z̄| < δ.

Similarly, we say that f (z) = o(g(z)) as z → z̄ ∈ Z if and only if for all M ′ > 0 there exists
δ′ > 0 such that

| f (z)| ≤ M ′|g(z)|, ∀z ∈ Z with |z − z̄| < δ′.

Note that unless otherwise specified, we consider z̄ = 0 in this work.

The following lemma is from Proposition 11.7 in [14].

123



758 J Glob Optim (2018) 71:753–813

Lemma 3 Let Z ⊂ R
n be nonempty, and f : Z → R and g : Z → R be bounded on Z.

Then ∣∣∣∣sup
z∈Z

f (z) − sup
z∈Z

g(z)

∣∣∣∣ ≤ sup
z∈Z

| f (z) − g(z)|,
∣∣∣∣ infz∈Z f (z) − inf

z∈Z g(z)
∣∣∣∣ ≤ sup

z∈Z
| f (z) − g(z)|.

Definition 8 (Convex and concave relaxations) Given a convex set Z ⊂ R
n and a function

f : Z → R, a convex function f cvZ : Z → R is called a convex relaxation of f on Z if
f cvZ (z) ≤ f (z),∀z ∈ Z . Similarly, a concave function f ccZ : Z → R is called a concave
relaxation of f on Z if f ccZ (z) ≥ f (z),∀z ∈ Z .

Definition 9 (Convex and concave envelopes) Given a convex set Z ⊂ R
n and a function

f : Z → R, a convex function f cv,envZ : Z → R is called the convex envelope of f on Z if
f cv,envZ is a convex relaxation of f on Z and for every convex relaxation f cvZ : Z → R, we
have f cv,envZ (z) ≥ f cvZ (z),∀z ∈ Z . Similarly, a concave function f cc,envZ : Z → R is called
the concave envelope of f on Z if f cc,envZ is a concave relaxation of f on Z and for every
concave relaxation f ccZ : Z → R, we have f cc,envZ (z) ≤ f ccZ (z),∀z ∈ Z .

The following result establishes sufficient conditions for lower semicontinuity of the con-
vex envelope. Note that a weaker version of this result is presented in [25, Corollary 17.2.1],
and stronger versions of this result are stated without proof in [9, p. 349] (where the assump-
tion that the function f is bounded above is relaxed) and in [33, p. 253] (where the assumptions
that the function f is bounded above and the set W is bounded are relaxed).

Lemma 4 Let W ⊂ R
nw be a nonempty compact convex set and f : W → R be a lower

semicontinuous function on W bounded above by M. Let f cv,envW denote the convex envelope
of f on W. Then f cv,envW is lower semicontinuous on W.

Proof The function f is lower semicontinuous on the compact set W iff its epigraph
{(x, r) : x∈W, r ≥ f (x)} is closed.Consequently, the set S :={(x, r) : x∈W, r≥ f (x), r ≤M}
is compact. Theorem 17.2 in [25] implies that conv(S) is a compact convex set.
Therefore, the set conv(S) ∪ {(x, r) : x ∈ W, r ≥ f (x)} is closed, which implies that{
(x, r) : x ∈ W, r ≥ f cv,envW (x)

}
is closed, which in turn implies that f cv,envW is lower semi-

continuous on W . ��
Remark 2 Although convex and concave relaxations of classes of functions can be con-
structed on general convex sets, the typical application requires construction of relaxations
on bounded intervals. Therefore, we will implicitly assume that the sets X and Y are intervals
and that relaxations are constructed on intervals in subsequent sections. The assumption that
X and Y are intervals is not restrictive since general convex constraints defining X and Y
that are available in factorable form can be equivalently reformulated to appear as part of
the constraints g and h. The proposed definitions of convergence order in the next section
will be based on schemes of relaxations constructed on intervals. Note that similar notions
of convergence order can be developed for schemes of relaxations constructed, for instance,
on simplices.

3 Definitions of convergence order

This section reviews the definitions of convergence orders of schemes of relaxations [5,6] and
defines the convergence order of a (reduced-space) lower bounding scheme. It is also shown

123



J Glob Optim (2018) 71:753–813 759

that the convergence order of a convergent scheme of relaxations at a point is governed by
the tiny intervals around that point. We begin with the following definition, adapted from [5,
Definition 6], that defines schemes of relaxations in a reduced-space.

Definition 10 (Schemes of convex and concave relaxations) Let V ⊂ R
nv and W ⊂ R

nw

be nonempty convex sets, and let f : V × W → R. Suppose, for every Z ∈ IW , we can
construct functions f cvV×Z : V × Z → R and f ccV×Z : V × Z → R that are convex and
concave relaxations, respectively, of f on V × Z . The sets of functions ( f cvV×Z )Z∈IW and
( f ccV×Z )Z∈IW define schemes of convex and concave relaxations of f inW , respectively, and
the set of pairs of functions ( f cvV×Z , f ccV×Z )Z∈IW defines a scheme of relaxations of f in W .
The schemes of relaxations are said to be continuous when f cvV×Z and f ccV×Z are continuous
on V × Z for each Z ∈ IW .

Bompadre and coworkers [5,6] defineHausdorff convergence of inclusion functions. Note
that an inclusion function can be associated with schemes of relaxations in a natural way
(see [5, Definition 7]).

Definition 11 (Hausdorff convergence order of an inclusion function) Let V ∈ IR
nv and

W ⊂ R
nw be nonempty sets, h : V × W → R be a continuous function, and H be an

inclusion function of h on I(V × W ).
The inclusion function H is said to have Hausdorff convergence of order β > 0 at a point

w ∈ W if for each bounded Q ⊂ W with w ∈ Q, there exists τ ≥ 0 such that

dH (h(V × Z), H(V × Z)) ≤ τw(Z)β, ∀Z ∈ IQ with w ∈ Z .

Moreover, H is said to have Hausdorff convergence of order β > 0 on W if it has Hausdorff
convergence of order (at least) β at each w ∈ W , with the constant τ independent of w.

In the context of (constrained) global optimization, the following definition of convergence
of schemes of convex and concave relaxations is more pertinent.

Definition 12 (Convergence order of schemes of convex and concave relaxations) Let
V ⊂ R

nv ,W ⊂ R
nw be nonempty convex sets, and f : V × W → R be a continuous

function. Let ( f cvV×Z )Z∈IW and ( f ccV×Z )Z∈IW respectively denote schemes of convex and
concave relaxations of f in W .

The scheme of convex relaxations ( f cvV×Z )Z∈IW is said to have convergence of order β > 0
at w ∈ W if for each bounded Q ⊂ W with w ∈ Q, there exists τ cv ≥ 0 such that

inf
(v,z)∈V×Z

f (v, z) − inf
(v,z)∈V×Z

f cvV×Z (v, z) ≤ τ cvw(Z)β, ∀Z ∈ IQ with w ∈ Z .

Similarly, the scheme of concave relaxations ( f ccV×Z )Z∈IW is said to have convergence of
order β > 0 at w ∈ W if for each bounded Q ⊂ W with w ∈ Q, there exists τ cc ≥ 0 such
that

sup
(v,z)∈V×Z

f ccV×Z (v, z) − sup
(v,z)∈V×Z

f (v, z) ≤ τ ccw(Z)β, ∀Z ∈ IQ with w ∈ Z .

The scheme of relaxations ( f cvV×Z , f ccV×Z )Z∈IW is said to have (Hausdorff) convergence of
order β > 0 atw ∈ W if the corresponding schemes of convex and concave relaxations have
convergence of orders (at least) β atw. The schemes ( f cvV×Z )Z∈IW and ( f ccV×Z )Z∈IW are said
to have convergence of order β > 0 on W if they have convergence of order (at least) β at
each w ∈ W , with constants τ cv and τ cc independent of w.
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Definition 13 (Pointwise convergence order of schemes of convex and concave relaxations)
Let V ⊂ R

nv ,W ⊂ R
nw be nonempty convex sets, and f : V × W → R be a continuous

function. Let ( f cvV×Z )Z∈IW and ( f ccV×Z )Z∈IW respectively denote schemes of convex and
concave relaxations of f in W . The scheme of convex relaxations ( f cvV×Z )Z∈IW is said to
have pointwise convergence of order γ > 0 at w ∈ W if for each bounded Q ⊂ W with
w ∈ Q, there exists τ cv ≥ 0 such that

sup
(v,z)∈V×Z

| f (v, z) − f cvV×Z (v, z)| ≤ τ cvw(Z)γ , ∀Z ∈ IQ with w ∈ Z .

Similarly, the scheme of concave relaxations ( f ccV×Z )Z∈IW is said to have pointwise conver-
gence of order γ > 0 at w ∈ W if for each bounded Q ⊂ W with w ∈ Q, there exists
τ cc ≥ 0 such that

sup
(v,z)∈V×Z

| f ccV×Z (v, z) − f (v, z)| ≤ τ ccw(Z)γ , ∀Z ∈ IQ with w ∈ Z .

The scheme of relaxations ( f cvV×Z , f ccV×Z )Z∈IW is said to have pointwise convergence of
order γ > 0 atw ∈ W if the corresponding schemes of convex and concave relaxations have
pointwise convergence of orders (at least) γ atw. Furthermore, the schemes of relaxations are
said to have pointwise convergence of order γ > 0 onW if they have pointwise convergence
of order at least γ at each w ∈ W , with constants τ cv and τ cc independent of w.

Note that we simply say that a scheme of relaxations, ( f cvV×Z , f ccV×Z )Z∈IW , of a function
f : V × W → R in W has (pointwise) convergence order of γ > 0 if it has (pointwise)
convergence of order γ on W .

Remark 3 Definitions 11, 12, and 13 are based on amodification (see [16, Definition 9.2.35])
of the definitions of convergence order proposed in [5,6], which incorporates the set Q. Note
that the use of the set Q is necessary when the schemes of relaxations are constructed
on unbounded sets, but may be omitted (set to W ) when the schemes of relaxations are
constructed over bounded sets (which is the typical application). Henceforth, the use of Q
shall be omitted for brevity since we are only interested in compact sets V and W (see
Assumption 1).

Remark 4 The pointwise convergence order of a convergent scheme of convex and concave
relaxations on W is governed by the strength of the relaxations over small intervals in W .
This observation is made precise in Lemma 5. Also note that the pointwise convergence order
of schemes of either convex, or concave relaxations (as per Definition 13) can be arbitrarily
high for nonlinear functions in contrast to the pointwise convergence order of schemes of
convex and concave relaxations (see Theorem 2 in [5]). For instance, consider the function
f : [0, 1]×[0, 1] =: V ×W → Rwith f (v,w) = v2 −√

w and a corresponding scheme of
convex relaxations ( f cvV×Z )Z∈IW defined by f cvV×Z (v, z) = v2 − √

w on [wL, wU] ⊂ [0, 1].
The scheme of convex relaxations ( f cvV×Z )Z∈IW has arbitrarily high pointwise convergence
order on W .

Remark 5 Unlike the pointwise convergence order of a scheme of relaxations, the con-
vergence order of a scheme of convex and concave relaxations can be arbitrarily high
for any function. For instance, consider the scheme of constant relaxations of the func-
tion f : [0, 1] × [0, 1] =: V × W → R with f (v,w) = w − √

v defined by
f cvV×Z (v, z) = wL − 1, f ccV×Z (v, z) = wU on [wL, wU] ⊂ [0, 1]. The scheme of con-
stant relaxations ( f cvV×Z , f ccV×Z )Z∈IW has arbitrarily high convergence order onW , but is not
pointwise convergent of any order on W .
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Lemma 5 Let V ⊂ R
nv ,W ⊂ R

nw be nonempty compact convex sets and f : V ×W → R.
Let ( f cvV×Z )Z∈IW denote a scheme of convex relaxations of f inW with pointwise convergence
order γ cv > 0 and corresponding prefactor τ cv ≥ 0 (on W). If there exist constants γ ≥
γ cv, τ ≥ 0, and δ > 0 such that for every Z ∈ IW with w(Z) ≤ δ,

sup
(v,z)∈V×Z

| f (v, z) − f cvV×Z (v, z)| ≤ τw(Z)γ ,

then ( f cvV×Z )Z∈IW converges pointwise with order γ to f on W.

Proof Since ( f cvV×Z )Z∈IW converges pointwise with order γ cv to f on W which is compact,
there exists M ≥ 0 such that

sup
(v,z)∈V×Z

| f (v, z) − f cvV×Z (v, z)| ≤ τ cvw(Z)γ
cv ≤ M, ∀Z ∈ IW.

The desired result then follows from the fact that for every Z ∈ IW ,

sup
(v,z)∈V×Z

| f (v, z) − f cvV×Z (v, z)| ≤
(

τ + M

δγ

)
w(Z)γ .

��
Results similar to Lemma 5 are applicable to other notions of convergence order presented

in this work. Note that if the constant δ in Lemma 5 is relatively small, then the bound on the
prefactor obtained can be relatively largemaking the result weak on intervals withw(Z) � δ.

The next result shows that for schemes of relaxations, the notion of pointwise convergence
is stronger than the notion of convergence in Definition 12 (also see [5, Theorem 1]).

Lemma 6 Let V ⊂ R
nv ,W ⊂ R

nw be nonempty compact convex sets, and ( f cvV×Z )Z∈IW and
( f ccV×Z )Z∈IW respectively denote schemes of convex and concave relaxations of a bounded
function f : V ×W → R in W. If either scheme has pointwise convergence of order γ > 0,
it has convergence of order β ≥ γ .

Proof By noting from Definition 13 that

sup
(v,z)∈V×Z

| f (v, z) − f cvV×Z (v, z)| ≤ τ cvw(W )γ , ∀Z ∈ IW,

sup
(v,z)∈V×Z

| f ccV×Z (v, z) − f (v, z)| ≤ τ ccw(W )γ , ∀Z ∈ IW,

the result follows from Lemma 3 via

inf
(v,z)∈V×Z

f (v, z) − inf
(v,z)∈V×Z

f cvV×Z (v, z) ≤ sup
(v,z)∈V×Z

| f (v, z) − f cvV×Z (v, z)|, ∀Z ∈ IW,

and

sup
(v,z)∈V×Z

f ccV×Z (v, z) − sup
(v,z)∈V×Z

f (v, z) ≤ sup
(v,z)∈V×Z

| f ccV×Z (v, z) − f (v, z)|, ∀Z ∈ IW.

��
The following lemma establishes mild sufficient conditions under which the scheme of

envelopes of a function is first-order pointwise convergent.

Lemma 7 Let W ⊂ R
nw be a nonempty compact convex set and f : W → R be Lipschitz

continuous on W. Let ( f cv,envZ , f cc,envZ )Z∈IW denote the scheme of envelopes of f in W. Then
the scheme ( f cv,envZ , f cc,envZ )Z∈IW is at least first-order pointwise convergent on W.
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Proof We wish to show that there exists τ ≥ 0 such that for every Z ∈ IW ,

sup
z∈Z

| f (z) − f cv,envZ (z)| ≤ τw(Z),

sup
z∈Z

| f (z) − f cc,envZ (z)| ≤ τw(Z).

Consider the scheme of relaxations ( f cvZ , f ccZ )Z∈IW defined by

f cvZ (z) = min
w∈Z f (w), f ccZ (z) = max

w∈Z f (w), ∀Z ∈ IW.

From the fact that f cvZ and f ccZ are convex and concave relaxations of f in Z and the
assumption that f is Lipschitz continuous, we have that ( f cvZ , f ccZ )Z∈IW is at least first-
order pointwise convergent on W . The desired result then follows from the definition of
( f cv,envZ , f cc,envZ )Z∈IW . ��

The definitions provided thus far facilitate a theoretical analysis of the (reduced-space)
convergence order of a scheme of relaxations to a corresponding scalar function, or, in the
context of global optimization, provide a way to analyze theoretically the (reduced-space)
convergence order of a (lower) bounding scheme for an unconstrained problem. The subse-
quent definitions seek to extend naturally the analysis of convergence order to constrained
problems.

Definition 14 (Convergence order of a lower bounding scheme) Consider Problem (P) (satis-
fyingAssumption1). For any Z ∈IY , letF (Z)={(x, y) ∈ X × Z : g(x, y) ≤ 0,h(x, y) = 0}
denote the feasible set of Problem (P) with y restricted to Z .

Consider a scheme of lower bounding problems (L (Z))Z∈IY for Problem (P). We
associate with the scheme (L (Z))Z∈IY a scheme of pairs (O(Z),IC (Z))Z∈IY , where
(O(Z))Z∈IY is a scheme of lower bounds on the scheme of problems(

min
(x,y)∈F (Z)

f (x, y)
)
Z∈IY and (IC (Z))Z∈IY is a scheme of subsets of RmI+mE that indi-

cate the feasibility of the lower bounding scheme (L (Z))Z∈IY . The schemes (O(Z))Z∈IY
and (IC (Z))Z∈IY (are required to) satisfy

O(Z) ≤ min
(x,z)∈F (Z)

f (x, z), ∀Z ∈ IY,

d(IC (Z),R
mI− × {0}) ≤ d

([
g
h

]
(X × Z),R

mI− × {0}
)

, ∀Z ∈ IY,

O(Z) = +∞ ⇐⇒ d(IC (Z),R
mI− × {0}) > 0, ∀Z ∈ IY,

where

[
g
h

]
(X × Z) denotes the image of X × Z under the vector-valued function

[
g
h

]
. The

scheme of lower bounding problems (L (Z))Z∈IY is said to have convergence of order β > 0
at

1. A feasible point y ∈ Y if there exists τ ≥ 0 such that for every Z ∈ IY with y ∈ Z ,

min
(x,z)∈F (Z)

f (x, z) − O(Z) ≤ τw(Z)β .

2. An infeasible point y ∈ Y if there exists τ̄ ≥ 0 such that for every Z ∈ IY with y ∈ Z ,

d

([
g
h

]
(X × Z),R

mI− × {0}
)

− d
(
IC (Z),R

mI− × {0}) ≤ τ̄w(Z)β .

123



J Glob Optim (2018) 71:753–813 763

The scheme of lower bounding problems is said to have convergence of order β > 0 on Y if
it has convergence of order (at least) β at each y ∈ Y , with constants τ and τ̄ independent
of y.

Remark 6 Definition 14 is motivated by the requirements of a lower bounding scheme to
fathom feasible and infeasible regions in a branch-and-bound procedure [13]. The first con-
dition requires that the sequence of lower bounds converges rapidly to the corresponding
sequence of minimum objective values on nested sequences of intervals converging to a fea-
sible point of Problem (P). On nested sequences of intervals converging to an infeasible point
of Problem (P), the second condition requires that the sequence of lower bounding problems
rapidly detect the (eventual) infeasibility of the corresponding sequences of intervals for
Problem (P). In simple terms, the first condition can be used to require that feasible points
with ‘good objective values’ are fathomed rather easily, while the second condition can be
used to require that infeasible points that are ‘close to the feasible region’, as determined
by the distance function d , are fathomed with relatively less effort [15]. Note that Defini-
tion 14 reduces to the definition of convergence order for unconstrained minimization in [38,
Definition 1] when nx ,mI , and mE are all set to zero.

Definition 14 can be readily applied to analyze the convergence order of a convex
relaxation-based lower bounding scheme as follows.

Suppose, for each Z ∈ IY , we associate a convex set X (Z) ⊂ R
nx such that X ⊃

X (Z) ⊃ FX (Z), where FX (Z) := {x ∈ X : ∃y ∈ Z s.t. g(x, y) ≤ 0,h(x, y) = 0} denotes
the projection of F (Z) on X . The set X (Z) could, for instance, correspond to an interval
subset of X that is obtained using bounds tightening techniques [2] when y is restricted to
Z (the motivation for considering the set X (Z) in the definition of convergence order below
will become clear in Sect. 5). Note that the restriction X (Z) ⊃ FX (Z) can be relaxed when
optimality-based bounds tightening techniques are employed. Also note that unless otherwise
specified, we simply use X (Z) = X,∀Z ∈ IY .

By an abuse of Definition 10, let ( f cvX (Z)×Z )Z∈IY and (gcvX (Z)×Z )Z∈IY denote continuous
schemes of convex relaxations of f and g, respectively, inY , and let (hcvX (Z)×Z ,hccX (Z)×Z )Z∈IY
denote a continuous scheme of relaxations of h in Y . For any Z ∈ IY , let

F cv(Z)=
{
(x, y) ∈ X (Z) × Z : gcvX (Z)×Z (x, y) ≤ 0, hcvX (Z)×Z (x, y) ≤ 0, hccX (Z)×Z (x, y) ≥ 0

}

denote the feasible set of the convex relaxation-based lower bounding scheme. The lower
bounding scheme (L (Z))Z∈IY with

(O(Z))Z∈IY :=
(

min
(x,z)∈F cv(Z)

f cvX (Z)×Z (x, z)
)
Z∈IY

,

(IC (Z))Z∈IY :=
({

(v,w) ∈ R
mI × R

mE : v = gcvX (Z)×Z (x, z),

hcvX (Z)×Z (x, z) ≤ w ≤ hccX (Z)×Z (x, z) for some (x, z) ∈ X (Z) × Z
})

Z∈IY
(1)

is said to have convergence of order β > 0 at

1. A feasible point y ∈ Y if there exists τ ≥ 0 such that for every Z ∈ IY with y ∈ Z ,

min
(x,z)∈F (Z)

f (x, z) − min
(x,z)∈F cv(Z)

f cvX (Z)×Z (x, z) ≤ τw(Z)β .

2. An infeasible point y ∈ Y if there exists τ̄ ≥ 0 such that for every Z ∈ IY with y ∈ Z ,
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d

([
g
h

]
(X (Z) × Z),R

mI− × {0}
)

− d
(
IC (Z),R

mI− × {0}) ≤ τ̄w(Z)β,

where IC (Z) is defined by Eq. (1).

Definition 14 can also be used to analyze the convergence orders of alternative lower
bounding schemes such as those based on Lagrangian duality (see Sect. 4.2).

4 Full-space branch-and-bound algorithms

In this section, we present some results on the convergence order of lower bounding schemes
for Problem (P)whenboth the X andY setsmaybepartitionedduring the course of the branch-
and-bound algorithm (we consider schemes of relaxations in X × Y instead of schemes of
relaxations in Y as was considered in Sect. 3). This section is divided into two parts. First, we
look at the convergence order of lower bounding schemes which utilize convex and concave
relaxations (see, for instance, [1,17,20,35,36] for techniques to construct relaxations) of the
objective and the constraints in its construction. Next, the convergence order of duality-based
lower bounding schemes (see, for instance, [9]) is investigated.

4.1 Convex relaxation-based branch-and-bound

This section derives bounds on the convergence order of convex relaxation-based lower
bounding schemes by making assumptions on the convergence orders of the schemes of
relaxations used by the lower bounding schemes. The reader is directed to [5,6,17,24] for
details on how to construct schemes of (convex) relaxations that have the requisite conver-
gence orders.

The following result establishes a lower bound on the convergence order of the lower
bounding scheme at infeasible points based on the convergence orders of schemes of convex
relaxations of the inequality constraints and schemes of relaxations of the equality constraints.
Note that this is the primary result that is used to derive a lower bound on the convergence
order of such relaxation-based lower bounding schemes at infeasible points.

Lemma 8 Let (gcvj,Z )Z∈I(X×Y ), j = 1, . . . , mI , denote continuous schemes of con-
vex relaxations of g1, . . . , gmI , respectively, in X × Y with pointwise convergence
orders γ cv

g,1 > 0, . . . , γ cv
g,mI

> 0 and corresponding constants τ cvg,1, . . . , τ
cv
g,mI

, and
(hcvk,Z , hcck,Z )Z∈I(X×Y ), k = 1, . . . ,mE, denote continuous schemes of relaxations of
h1, . . . , hmE , respectively, in X×Y with pointwise convergenceordersγh,1 > 0, . . . , γh,mE >

0 and corresponding constants τh,1, . . . , τh,mE . Then, there exists τ̄ ≥ 0 such that for every
Z ∈ I(X × Y )

d

([
g
h

]
(Z),R

mI− × {0}
)

− d
(
IC (Z),R

mI− × {0}) ≤ τ̄w(Z)β,

where IC (Z) is defined as

IC (Z) := {(v,w) ∈ R
mI × R

mE : v = gcvZ (x, y), hcvZ (x, y) ≤ w ≤ hccZ (x, y) for some (x, y) ∈ Z
}
,

and β is defined as

β := min

{
min

j∈{1,...,mI }
γ cv
g, j , min

k∈{1,...,mE }γh,k

}
.
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Proof Suppose Z ∈ I(X × Y ). Then for each j ∈ {1, . . . ,mI }, k ∈ {1, . . . ,mE }, we have
from Definition 13 that

max
(x,y)∈Z|g j (x, y) − gcvj,Z (x, y)| ≤ τ cvg, jw(Z)

γ cv
g, j ,

max
(x,y)∈Z|hk(x, y) − hcvk,Z (x, y)| ≤ τh,kw(Z)γh,k ,

max
(x,y)∈Z|hk(x, y) − hcck,Z (x, y)| ≤ τh,kw(Z)γh,k ,

since (gcvj,Z )Z∈I(X×Y ) and (hcvk,Z , hcck,Z )Z∈I(X×Y ) converge pointwise to g j and hk , respec-
tively, on X × Y with orders γ cv

g, j and γh,k . Let (xcvZ , ycvZ ) ∈ Z and (vcvZ ,wcv
Z ) ∈

IC (Z) such that vcvZ = gcvZ (xcvZ , ycvZ ),hcvZ (xcvZ , ycvZ ) ≤ wcv
Z ≤ hccZ (xcvZ , ycvZ ), and

d
({

(vcvZ ,wcv
Z )
}
,R

mI− × {0}) = d
(
IC (Z),R

mI− × {0}). The existence of (xcvZ , ycvZ ) and
(vcvZ ,wcv

Z ) follows from the continuity of gcvZ ,hcvZ , andhccZ and the compactness of Z .We have

d

([
g
h

]
(Z) ,R

mI− × {0}
)

− d
(
IC (Z) ,R

mI− × {0})

≤ d

({[
g
h

] (
xcvZ , ycvZ

)}
,R

mI− × {0}
)

− d
({(

vcvZ ,wcv
Z

)}
,R

mI− × {0})

≤ d

({[
g
h

] (
xcvZ , ycvZ

)− (vcvZ ,wcv
Z

)}
,R

mI− × {0}
)

≤ ∥∥g (xcvZ , ycvZ
)− vcvZ

∥∥+ ∥∥h (xcvZ , ycvZ
)− wcv

Z

∥∥
≤ ∥∥g (xcvZ , ycvZ

)− gcvZ
(
xcvZ , ycvZ

)∥∥
+ max

{∥∥h (xcvZ , ycvZ
)− hcvZ

(
xcvZ , ycvZ

)∥∥, ∥∥h (xcvZ , ycvZ
)− hccZ

(
xcvZ , ycvZ

)∥∥}
≤ max

(x,y)∈Z‖g (x, y) − gcvZ (x, y)‖

+ max

{
max

(x,y)∈Z‖h (x, y) − hcvZ (x, y)‖, max
(x,y)∈Z‖h (x, y) − hccZ (x, y)‖

}

≤
mI∑
j=1

max
(x,y)∈Z|g j (x, y) − gcvj,Z (x, y)|

+ max

{mE∑
k=1

max
(x,y)∈Z|hk (x, y) − hcvk,Z (x, y)|,

mE∑
k=1

max
(x,y)∈Z|hk (x, y) − hcck,Z (x, y)|

}

≤
mI∑
j=1

τ cvg, jw (Z)
γ cv
g, j +

mE∑
k=1

τh,kw (Z)γh,k

≤
⎛
⎝ mI∑

j=1

τ cvg, jw (X × Y )
γ cv
g, j−β +

mE∑
k=1

τh,kw (X × Y )γh,k−β

⎞
⎠w (Z)β,

where Corollary 1 is used to derive Step 2, Step 3 follows from the triangle inequality, and
Lemma 2 is used to derive Step 6. The desired result follows by choosing τ̄ as

τ̄ =
⎛
⎝ mI∑

j=1

τ cvg, jw(X × Y )
γ cv
g, j−β +

mE∑
k=1

τh,kw(X × Y )γh,k−β

⎞
⎠ .

��
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Note that the conclusions of Lemma 8 hold even when the schemes of convex relax-
ations (gcvj,Z )Z∈I(X×Y ),∀ j ∈ {1, . . . ,mI }, and (hcvk,Z )Z∈I(X×Y ),∀k ∈ {1, . . . ,mE }, are
merely lower semicontinuous, and the schemes of concave relaxations (hcck,Z )Z∈I(X×Y ),∀k ∈
{1, . . . ,mE }, are merely upper semicontinuous.

Remark 7 The analysis in Lemma 8 can be refined under the following assumptions. Let
(gcvj,Z )Z∈I(X×Y ), j = 1, . . . , mI , denote schemes of convex relaxations of g1, . . . , gmI ,
respectively, in X × Y with convergence orders βcv

g,1 > 0, . . . , βcv
g,mI

> 0 and corre-
sponding constants τ cvg,1, . . . , τ

cv
g,mI

, and let (hcvk,Z , hcck,Z )Z∈I(X×Y ), k = 1, . . . ,mE , denote
schemes of relaxations of h1, . . . , hmE , respectively, in X × Y with convergence orders
βh,1 > 0, . . . , βh,mE > 0 and corresponding constants τh,1, . . . , τh,mE . Suppose for each
interval Z ∈ I(X × Y ), there exists (xZ , yZ ) ∈ Z such that

d
({(xZ , yZ )} ,R

mI− × {0}) = d

([
g
h

]
(Z),R

mI− × {0}
)

,

(xZ , yZ ) ∈ argmin
(x,y)∈Z

g j (x, y), ∀ j ∈ {1, . . . ,mI },
either (xZ , yZ ) ∈ argmin

(x,y)∈Z
hk(x, y), or (xZ , yZ ) ∈ argmax

(x,y)∈Z
hk(x, y), ∀k ∈ {1, . . . ,mE }.

Then, there exists τ̄ ≥ 0 such that for every Z ∈ I(X × Y )

d

([
g
h

]
(Z),R

mI− × {0}
)

− d
(
IC (Z),R

mI− × {0}) ≤ τ̄w(Z)β,

where β is defined as

β := min

{
min

j∈{1,...,mI }
βcv
g, j , min

k∈{1,...,mE }βh,k

}
.

Note that the above assumptions are trivially satisfiedwhen Problem (P) only has one inequal-
ity constraint (cf. Example 1).

The following example demonstrates the importance of a sufficiently high convergence
order at nearly-feasible points (also see [15, Example 4]).

Example 1 Let X = [0, 0], Y = [−1, 1],mI = 1, and mE = 0 with f (x, y) = y and
g(x, y) = −y. For any [0, 0] × [yL, yU] =: Z ∈ I(X × Y ), let f cvZ (x, y) = y, gcvZ (x, y) =
−yU − (yU − yL)α for some constant α > 0. Note that ( f cvZ )Z∈I(X×Y ) has arbitrarily
high pointwise convergence order and arbitrarily high convergence order on X ×Y , whereas
(gcvZ )Z∈I(X×Y ) hasmin{α, 1}-order pointwise convergence andα-order convergenceon X×Y .

Pick δ ∈ (0, 1) and let ε ∈ (0, δ). Let yL = −δ − ε, yU = −δ + ε. The width of
Z is w(Z) = 2ε. We have g(Z) = [δ − ε, δ + ε], which yields d(g(Z),R

mI− ) = δ − ε

(this confirms that g is infeasible at each (x, y) ∈ Z ). Furthermore, gcvZ (Z) = [δ − ε −
(2ε)α, δ − ε − (2ε)α], which yields d(gcvZ (Z),R

mI− ) = max{0, δ − ε − (2ε)α}. Therefore,
for ε sufficiently small, the lower bounding problem detects the infeasibility of Z and we
have d(g(Z),R

mI− )−d(gcvZ (Z),R
mI− ) = (2ε)α , which implies that convergence of the lower

bounding scheme at the infeasible point (0,−δ) is at most of order α.
For α = 1, the maximum value of ε for which the interval Z can be fathomed by infeasi-

bility by the lower bounding scheme is ε = δ
3 , whereas for α = 0.5, the maximum value of

ε for which the interval Z can be fathomed by infeasibility by the lower bounding scheme is

ε =
(−√

2+√
2
√
1+2δ

2

)2
, which is O(δ2) for δ � 1.
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Therefore, a lower bounding scheme with a low convergence order at infeasible points
may result in a large number of partitions on nearly-feasible points before they are fathomed,
thereby resulting in the cluster problem.

The next result shows that under mild assumptions on the objective, the constraints, and
the schemes of relaxations, first-order convergence to a global minimum is guaranteed.

Theorem 1 Consider Problem (P). Suppose f, g j , j = 1, . . . ,mI , and hk, k = 1, . . . ,mE,
are Lipschitz continuous on X×Y with Lipschitz constants M f , Mg,1, . . . , Mg,mI , Mh,1, . . . ,

Mh,mE , respectively. Let ( f cvZ )Z∈I(X×Y ), (gcvj,Z )Z∈I(X×Y ), j = 1, . . . ,mI , denote continu-
ous schemes of convex relaxations of f, g1, . . . , gmI , respectively, in X × Y with pointwise
convergence orders γ cv

f ≥ 1, γ cv
g,1 ≥ 1, . . . , γ cv

g,mI
≥ 1 and corresponding constants

τ cvf , τ cvg,1, . . . , τ
cv
g,mI

. Let (hcvk,Z , hcck,Z )Z∈I(X×Y ), k = 1, . . . ,mE, denote continuous schemes
of relaxations of h1, . . . , hmE , respectively, in X × Y with pointwise convergence orders
γh,1 ≥ 1, . . . , γh,mE ≥ 1 and corresponding constants τh,1, . . . , τh,mE . The scheme of lower
bounding problems (L (Z))Z∈I(X×Y ) with

(O(Z))Z∈I(X×Y ) :=
(

min
(x,y)∈F cv(Z)

f cvZ (x, y)
)
Z∈I(X×Y )

,

(IC (Z))Z∈I(X×Y ) := ({(v,w) ∈ R
mI × R

mE : v = gcvZ (x, y),hcvZ (x, y) ≤ w ≤ hccZ (x, y)

for some (x, y) ∈ Z
})

Z∈I(X×Y )

is at least first-order convergent on X × Y .

Proof Lemma 8 establishes first-order convergence at infeasible points (x, y) ∈ X × Y with
the prefactor τ̄ independent of (x, y); therefore, it suffices to prove first-order convergence
at feasible points (x, y) ∈ X × Y with a prefactor independent of (x, y).

In order to do so, suppose F (X × Y ) �= ∅ and consider Z ∈ I(X × Y ) such that
Z ∩ F (X × Y ) �= ∅. Let

F cv(Z) := {(x, y) ∈ Z : gcvZ (x, y) ≤ 0,hcvZ (x, y) ≤ 0,hccZ (x, y) ≥ 0
}

denote the feasible set of the convex relaxation-based lower bounding scheme. Then

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y)

=
(

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f (x, y)
)

+
(

min
(x,y)∈F cv(Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y)
)

≤
(

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f (x, y)
)

+ max
(x,y)∈F cv(Z)

∣∣ f (x, y) − f cvZ (x, y)
∣∣ , (2)

where the above inequality follows fromLemma3. The second term inEq. (2) can be bounded
from above as

max
(x,y)∈F cv(Z)

∣∣ f (x, y) − f cvZ (x, y)
∣∣ ≤ τ cvf w(Z)

γ cv
f ,

since ( f cvZ )Z∈I(X×Y ) converges pointwise to f on X × Y with order γ cv
f ≥ 1.
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Let (x∗
Z , y∗

Z ) ∈ argmin
(x,y)∈F (Z)

f (x, y) and (xcvZ , ycvZ ) ∈ argmin
(x,y)∈F cv(Z)

f (x, y). The first term in

Eq. (2) can be bounded from above as(
min

(x,y)∈F (Z)
f (x, y) − min

(x,y)∈F cv(Z)
f (x, y)

)
= f (x∗

Z , y∗
Z ) − f

(
xcvZ , ycvZ

)

≤ M f
√
nx + ny w(Z),

where the last step follows from the Lipschitz continuity of f on X × Y and Lemma 2.
Plugging in the above bounds in Eq. (2), we get

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y) ≤
(
M f
√
nx + ny + τ cvf w(X×Y )

γ cv
f −1

)
w(Z),

which establishes first-order convergence of (L (Z))Z∈I(X×Y ) at feasible points (x, y) ∈
X × Y with the prefactor independent of (x, y). ��

The following examples show that the convergence order of the lower bounding scheme
may be as low as one under the assumptions of Theorem 1.

Example 2 Let X = [−1, 1], Y = [−1, 1],mI = 1, and mE = 0 with f (x, y) = 2x + 2y
and g(x, y) = −x−y. For any [xL, xU]×[yL, yU] =: Z ∈ I(X×Y ), let f cvZ (x, y) = 2x+2y
and gcvZ (x, y) = −xU − yU. The scheme ( f cvZ )Z∈I(X×Y ) has arbitrarily high pointwise con-
vergence order on X×Y and the scheme (gcvZ )Z∈I(X×Y ) has first-order pointwise convergence
on X × Y . Note that (gcvZ )Z∈I(X×Y ) has arbitrarily high convergence order on X × Y .

Let xL = yL = −ε, xU = yU = ε with 0 < ε ≤ 1. The width of Z is w(Z) = 2ε.
The optimal objective value of Problem (P) on Z is 0, while the optimal objective of the
lower bounding problem on Z is −4ε. Convergence at the point (0, 0) is, therefore, at most
first-order.

Example 3 Let X = [−1, 1], Y = [−1, 1],mI = 1, and mE = 0 with f (x, y) = 2x + 2y
and g(x, y) = −x − y. For any [xL, xU] × [yL, yU] =: Z ∈ I(X × Y ), let f cvZ (x, y) =
2xL + 2yL and gcvZ (x, y) = −x − y. The scheme ( f cvZ )Z∈I(X×Y ) has first-order pointwise
convergence on X × Y and the scheme (gcvZ )Z∈I(X×Y ) has arbitrarily high pointwise conver-
gence order on X × Y . Note that ( f cvZ )Z∈I(X×Y ) has arbitrarily high convergence order on
X × Y .

Let xL = yL = −ε, xU = yU = ε with 0 < ε ≤ 1. The width of Z is w(Z) = 2ε.
The optimal objective value of Problem (P) on Z is 0, while the optimal objective of the
lower bounding problem on Z is −4ε. Convergence at the point (0, 0) is, therefore, at most
first-order.

Example 4 Let X = [0, 0], Y = [−1, 1],mI = 1, and mE = 0 with f (x, y) = y and
g(x, y) = min{−0.5y,−y}. For any [0, 0]× [yL, yU] =: Z ∈ I(X ×Y ) with yL < 0 < yU,
let

f cvZ (x, y) = y, gcvZ (x, y) = − yU − 0.5yL

yU − yL
y + 0.5yLyU

yU − yL
.

Note that gcvZ corresponds to the convex envelope of g on Z . The scheme ( f cvZ )Z∈I(X×Y ) has
arbitrarily high pointwise convergence order on X × Y and the scheme (gcvZ )Z∈I(X×Y ) has
first-order pointwise convergence on X × Y . Note that (gcvZ )Z∈I(X×Y ) has arbitrarily high
convergence order on X × Y .
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Let yL = −ε, yU = ε with 0 < ε ≤ 1. The width of Z is w(Z) = 2ε. The optimal
objective value of Problem (P) on Z is 0, while the optimal objective of the lower bounding
problem on Z is − ε

3 . Convergence at the point (0, 0) is, therefore, at most first-order.

Example 5 Let X = [0, 0], Y = [−1, 1],mI = 0, and mE = 1 with f (x, y) = y and
h(x, y) = min{−0.5y,−y}. For any [0, 0]× [yL, yU] =: Z ∈ I(X ×Y ) with yL < 0 < yU,
let

f cvZ (x, y) = y, hcvZ (x, y) = − yU − 0.5yL

yU − yL
y + 0.5yLyU

yU − yL
, hccZ (x, y) = min{−0.5y,−y}.

Note that hcvZ and hccZ correspond to the convex and concave envelopes of h on Z , respectively.
The scheme ( f cvZ )Z∈I(X×Y ) has arbitrarily high pointwise convergence order on X × Y and
the scheme (hcvZ , hccZ )Z∈I(X×Y ) has first-order pointwise convergence on X × Y . Note that
(hcvZ , hccZ )Z∈I(X×Y ) has arbitrarily high convergence order on X × Y .

Let yL = −ε, yU = ε with 0 < ε ≤ 1. The width of Z is w(Z) = 2ε. The optimal
objective value of Problem (P) on Z is 0, while the optimal objective of the lower bounding
problem on Z is − ε

3 . Convergence at the point (0, 0) is, therefore, at most first-order.

Despite the fact that the schemes of relaxations used in Examples 4 and 5 correspond
to the envelopes of the functions involved (unlike those used in Examples 2 and 3), we
only have first-order convergence at the global minimizer (0, 0). However, the reader can
verify that first-order convergent lower bounding schemes may be sufficient to mitigate
the cluster problem in Examples 4 and 5, whereas at least second-order convergent lower
bounding schemes are required to mitigate the cluster problem in Examples 2 and 3 [15].
Furthermore, Examples 2–5 illustrate that high convergence orders of schemes of relaxations
of the objective and constraints do not guarantee a high convergence order of the lower
bounding scheme (cf. Remark 7) at constrained minima (which may be required to mitigate
clustering). This is because a high convergence order of a scheme of relaxations of the
objective function may only place a restriction on the gap between the minimum value of
the relaxation and the minimum value of the objective function without taking the feasible
region into account; this restriction may not be sufficient in a constrained setting because
the gap between the minimum value of the relaxed problem and the minimum value of the
original problem may be relatively large when their respective feasible regions are taken into
consideration (see Example 3 for an extreme case). Similarly, a high convergence order of a
scheme of relaxations of the constraintsmay not exclude infeasible regions of the search space
in which the objective function value is less than the optimal (constrained) objective value
(Example 2 provides an extreme case), potentially leading to relatively large underestimation
gaps.

The following result proves second-order convergence at certain points in X × Y .

Theorem 2 ConsiderProblem (P). Suppose f is Lipschitz continuous on X×Y withLipschitz
constant M f . Let ( f cvZ )Z∈I(X×Y ) denote a continuous scheme of convex relaxations of f with
pointwise convergence order γ cv

f ≥ 2 and corresponding constant τ cvf .

Suppose there exists a feasible point (xf, yf) ∈ F (X × Y ), continuous schemes of con-
vex relaxations (gcvj,Z )Z∈I(X×Y ), j = 1, . . . ,mI , of g1, . . . , gmI , respectively, in X × Y ,
continuous schemes of relaxations (hcvk,Z , hcck,Z )Z∈I(X×Y ), k = 1, . . . ,mE, of h1, . . . , hmE ,

respectively, in X×Y , and a constant δ > 0 such that for each Z ∈ I(X×Y )with (xf, yf) ∈ Z
and w(Z) ≤ δ, we have

d

(
F (Z), argmin

(x,y)∈F cv(Z)

f (x, y)

)
≤ τ̂w(Z)γ (3)
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for constants γ ≥ 2 and τ̂ ≥ 0. Then, the scheme of lower bounding problems
(L (Z))Z∈I(X×Y ) with

(O(Z))Z∈I(X×Y ) :=
(

min
(x,y)∈F cv(Z)

f cvZ (x, y)
)
Z∈I(X×Y )

,

(IC (Z))Z∈I(X×Y ) := ({(v,w) ∈ R
mI × R

mE : v = gcvZ (x, y),hcvZ (x, y) ≤ w ≤ hccZ (x, y)

for some (x, y) ∈ Z
})

Z∈I(X×Y )

is at least min{γ cv
f , γ }-order convergent at (xf, yf).

Proof Suppose Z ∈ I(X × Y ) such that (xf, yf) ∈ Z and w(Z) ≤ δ. From the proof of
Theorem 1, we have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y)

≤
(

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f (x, y)
)

+
(

min
(x,y)∈F cv(Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y)
)

≤
(

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f (x, y)
)

+ τ cvf w(Z)
γ cv
f . (4)

Consider (x∗
Z , y∗

Z ) ∈ argmin
(x,y)∈F (Z)

f (x, y). Choose (x̂Z , ŷZ ) ∈ F (Z) and (xcvZ , ycvZ ) ∈
argmin

(x,y)∈F cv(Z)

f (x, y) such that d
({(x̂Z , ŷZ )}, {(xcvZ , ycvZ )}) ≤ τ̂w(Z)γ (note that (x̂Z , ŷZ ) and

(xcvZ , ycvZ ) exist by assumption). The first term in Eq. (4) can be bounded from above as

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f (x, y) = f
(
x∗
Z , y∗

Z

)− f
(
xcvZ , ycvZ

)

≤ f
(
x̂Z , ŷZ

)− f
(
xcvZ , ycvZ

)
≤ M f d

({(
x̂Z , ŷZ

)}
,
{(
xcvZ , ycvZ

)})
≤ M f τ̂w (Z)γ ,

where Step 3 above follows from the Lipschitz continuity of f . Therefore, from Eq. (4),

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y)

≤
(
M f τ̂w(X × Y )

γ−min
{
γ cv
f ,γ

}
+ τ cvf w(X × Y )

γ cv
f −min

{
γ cv
f ,γ

})
w(Z)

min
{
γ cv
f ,γ

}
.

The desired result follows by analogy to Lemma 5 by noting that the lower bounding scheme
(L (Z))Z∈I(X×Y ) has convergence of order at least one at (xf, yf) from Theorem 1. ��

The key assumption of Theorem 2, Eq. (3), is rather unwieldy since verifying it involves
the solution of the optimization problem min

(x,y)∈F cv(Z)
f (x, y) for each Z ∈ I(X × Y ) with

(xf, yf) ∈ Z and w(Z) ≤ δ. The following more restrictive (but potentially more easily
verifiable) condition implies Eq. (3):

∃δ > 0, τ̂ ≥ 0, γ ≥ 2 : dH (F (Z),F cv(Z)) ≤ τ̂w(Z)γ ,

∀Z ∈ I(X × Y ) with (xf, yf) ∈ Z and w(Z) ≤ δ.
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The following example shows that the convergence order may be as low as two under the
assumptions of Theorem 2.

Example 6 Let X = [−1, 1], Y = [−1, 1],mI = 1, and mE = 0 with f (x, y) = −xy and
g(x, y) = x + y − 1. For any [xL, xU] × [yL, yU] =: Z ∈ I(X × Y ), let

f cvZ (x, y) = max{−xUy + (−x)yL − (−xU)yL,−xLy + (−x)yU − (−xL)yU},
gcvZ (x, y) = x + y − 1.

The scheme ( f cvZ )Z∈I(X×Y ), which corresponds to the scheme of convex envelopes of f on
X × Y , has (at least) second-order pointwise convergence on X × Y (see [5, Theorem 10])
and the scheme (gcvZ )Z∈I(X×Y ) has arbitrarily high pointwise convergence order on X × Y .
Note that ( f cvZ )Z∈I(X×Y ) has arbitrarily high convergence order on X × Y .

Let xL = yL = 0.5 − ε, xU = yU = 0.5 + ε with 0 < ε ≤ 0.5. The width of Z is
w(Z) = 2ε. The optimal objective value of Problem (P) on Z is−0.25,while f cvZ (0.5, 0.5) =
−0.25 − ε2 and gcvZ (0.5, 0.5) = 0. Convergence at the point (0.5, 0.5) is, therefore, at most
second-order.

Note that the use of feasibility-based bounds tightening techniques is ineffective in boost-
ing the convergence order for the above example. This is in contrast to the similar Example 16
where the use of constraint propagation techniques improves the convergence order of
reduced-space branch-and-bound algorithms (also see Examples 17 and 18 in Sect. 5.2).

Remark 8 Theorem 2 requires, at a minimum, second-order pointwise convergence of the
scheme of convex relaxations ( f cvZ )Z∈I(X×Y ), which cannot be achieved in general by relax-
ations constructed purely using interval arithmetic [22]. Consequently, lower bounding
schemes constructed using interval arithmetic can, in general, only be expected to possess
first-order convergence (see Theorem 1). When the functions f, g, and h are twice contin-
uously differentiable, references [26] and [34] imply that polyhedral outer-approximation
schemes of second-order pointwise convergent schemes of relaxations, that are employed by
most state-of-the-art software for nonconvex problems (P) [2,21,35], also produce second-
order pointwise convergent schemes of relaxations.

The following corollary of Theorem 2 shows that second-order convergence is guaranteed
at points (x, y) ∈ X × Y such that g(x, y) < 0, assuming Problem (P) contains no equality
constraints (note the weaker assumption on the pointwise convergence order of the scheme
( f cvZ )Z∈I(X×Y ), and the slight abuse of notation in the description ofIC (Z)where we simply
discard the components corresponding to h since mE = 0). A consequence of the corollary
is that second-order convergence to unconstrained minima is guaranteed.

Corollary 2 Consider Problem (P) with mE = 0. Suppose f is Lipschitz continuous on
X×Y . Let ( f cvZ )Z∈I(X×Y ) denote a continuous schemeof convex relaxations of f in X×Y with
pointwise convergence order γ cv

f ≥ 1, and convergence order βcv
f ≥ 2 with corresponding

constant τ cvf . Furthermore, let (gcvj,Z )Z∈I(X×Y ), j = 1, . . . ,mI , denote continuous schemes
of convex relaxations of g1, . . . , gmI , respectively, in X × Y with pointwise convergence
orders γ cv

g,1 > 0, . . . , γ cv
g,mI

> 0 and corresponding constants τ cvg,1, . . . , τ
cv
g,mI

.

Suppose (xS, yS) ∈ X × Y is such that g(xS, yS) < 0 (i.e. (xS, yS) is a Slater point).
Then, the scheme of lower bounding problems (L (Z))Z∈I(X×Y ) with
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(O(Z))Z∈I(X×Y ) :=
(

min
(x,y)∈F cv(Z)

f cvZ (x, y)
)
Z∈I(X×Y )

,

(IC (Z))Z∈I(X×Y ) := (gcvZ (Z)
)
Z∈I(X×Y )

is at least βcv
f -order convergent at (x

S, yS).

Proof Since we are interested in the convergence order at the feasible point (xS, yS), it
suffices to show that the assumptions of Theorem 2 hold.

Let g j (xS, yS) = −ε j < 0, j = 1, . . . ,mI . Since g j is continuous for each j ∈
{1, . . . ,mI } by virtue of Assumption 1, there exists δ j > 0,∀ j ∈ {1, . . . ,mI }, such that
‖(x, y) − (xS, yS)‖∞ < δ j implies |g j (x, y) − g j (xS, yS)| <

ε j
2 (see Lemma 2).

Define δ := min
j∈{1,...,mI }

δ j , and note that δ > 0. Consider Z ∈ I(X × Y ) such that

(xS, yS) ∈ Z and w(Z) ≤ δ. For each (x, y) ∈ Z , j ∈ {1, . . . ,mI } we have |g j (x, y) −
g j (xS, yS)| <

ε j
2 . Consequently, for each j ∈ {1, . . . ,mI }, g j (x, y) < − ε j

2 , ∀(x, y) ∈ Z .
Since gcvZ (x, y) ≤ g(x, y) < − ε j

2 ,∀(x, y) ∈ Z , we have gcvZ (x, y) < − ε j
2 ,∀(x, y) ∈ Z , i.e.

every point in Z is feasible for Problem (P) and the lower bounding problem L (Z).
Therefore, δ := min

j∈{1,...,mI }
δ j , any (x̂Z , ŷZ ) ∈ argmin

(x,y)∈F cv(Z)

f (x, y), γ = βcv
f + 1, and

τ̂ = 0 satisfies the (necessary) assumptions of Theorem 2 which yield an upper bound on
the first term in Eq. (4). The second term in Eq. (4) can be bounded from above as

min
(x,y)∈F cv(Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y) = min
(x,y)∈Z f (x, y) − min

(x,y)∈Z f cvZ (x, y)

≤ τ cvf w(Z)
βcv
f

since f cvZ converges with order βcv
f to f on X ×Y , andF cv(Z) = Z . Substituting the above

bounds in Eq. (4), we obtain

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y) ≤ τ cvf w(Z)
βcv
f .

The desired result follows by analogy to Lemma 5 by noting that the lower bounding scheme
(L (Z))Z∈I(X×Y ) is at least first-order convergent at (xS, yS) from Theorem 1. ��

Note that the bound on the prefactor obtained from Corollary 2 for convergence at points
where a constraint is ‘nearly active’ can be relatively large (also see the comment after
Lemma 5).

Remark 9 Corollary 2 does not apply to Problem (P) with active constraints; however, The-
orem 2 can be used to demonstrate second-order convergence when Problem (P) contains
active convex constraints (note that this includes affine equality constraints) if the schemes
of relaxations of the active constraints are the (convex) functions themselves and the scheme
of convex relaxations of the objective function is second-order pointwise convergent. Exam-
ples 8 and 9 illustrate cases where the above modification of Corollary 2 does not apply when
the schemes of relaxations of active convex constraints are not the constraints themselves
(note that if the schemes of relaxations of active convex constraints used are the constraints
themselves, then the convergence orders of the lower bounding schemes in these examples
would be arbitrarily high at their minimizers), thereby highlighting the importance of con-
vexity detection in boosting the convergence order.

The following example shows that the convergence order of the lower bounding scheme is
dictated by the convergence order, βcv

f , of the scheme ( f cvZ )Z∈I(X×Y ) when the assumptions
of Corollary 2 are satisfied.
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Example 7 Let X = [0, 0], Y = [0, 1],mI = 1, and mE = 0 with f (x, y) = y4 − y2

and g(x, y) = 1 − 2y. For any [0, 0] × [yL, yU] =: Z ∈ I(X × Y ), let f cvZ (x, y) =
y4 − (yL + yU)y + yLyU, gcvZ (x, y) = 1 − 2y. The scheme ( f cvZ )Z∈I(X×Y ) has second-
order pointwise convergence and second-order convergence on X × Y , while the scheme
(gcvZ )Z∈I(X×Y ) has arbitrarily high pointwise convergence order on X × Y .

Let yL = 1√
2

− ε, yU = 1√
2

+ ε with 0 < ε ≤ 0.25. The width of Z is w(Z) = 2ε. The

optimal objective value of Problem (P) on Z is −0.25, while the optimal objective of the

lower bounding problem on Z is−0.25−ε2. Convergence at the point
(
0, 1√

2

)
is, therefore,

at most second-order.

Example 8 Let X = [−3, 3], Y = [−3, 3],mI = 1, and mE = 0 with f (x, y) = x + y and
g(x, y) = x2 + y2 − 8. For any [xL, xU] × [yL, yU] =: Z ∈ I(X × Y ), let f cvZ (x, y) =
x + y, gcvZ (x, y) = x2 + y2 − 8− (w(Z))2. The scheme ( f cvZ )Z∈I(X×Y ) has arbitrarily high
pointwise convergence order on X × Y , while the scheme (gcvZ )Z∈I(X×Y ) has second-order
pointwise convergence on X × Y .

Let xL = yL = −2−ε, xU = yU = −2+εwith 0 < ε ≤ 1. Thewidth of Z isw(Z) = 2ε.
The optimal objective value of Problem (P) on Z is −4, while the optimal objective of the
lower bounding problem on Z is −√

16 + 8ε2 = −4− ε2 + O(ε4) for ε � 1. Convergence
at the point (−2,−2) is, therefore, at most second-order.

Example 9 Let X = [0, 1], Y = [0, 1],mI = 1, and mE = 0 with f (x, y) = −x − y and
g(x, y) = x2 + 2xy + y2 − 1. For any [xL, xU] × [yL, yU] =: Z ∈ I(X × Y ), let

f cvZ (x, y) = −x − y,

gcvZ (x, y) = x2 + 2max
{
xLy + yLx − xLyL, xUy + yUx − xUyU

}+ y2 − 1.

The scheme ( f cvZ )Z∈I(X×Y ) has arbitrarily high pointwise convergence order on X×Y , while
the scheme (gcvZ )Z∈I(X×Y ) has second-order pointwise convergence on X × Y .

Let xL = yL = 0.5 − ε, xU = yU = 0.5 + ε with 0 < ε ≤ 0.5. The width of Z
is w(Z) = 2ε. The optimal objective value of Problem (P) on Z is −1, while the point(
0.5 − 0.25ε2, 0.5 + 0.5ε2

)
is feasible for the lower bounding problem on Z with objective

value −1 − 0.25ε2. Convergence at the point (0.5, 0.5) is, therefore, at most second-order.

The next result provides a slight generalization of Corollary 2 by showing that under the
assumptions of Corollary 2, the lower bounding scheme (L (Z))Z∈I(X×Y ) in fact exhibits (at
least) second-order convergence on a neighborhood of (xS, yS) (this result is motivated by
the assumptions on the convergence order of the lower bounding scheme in the analysis of
the cluster problem in [15]).

Corollary 3 Consider Problem (P) with mE = 0. Suppose f is Lipschitz continuous on
X×Y . Let ( f cvZ )Z∈I(X×Y ) denote a continuous schemeof convex relaxations of f in X×Y with
pointwise convergence order γ cv

f ≥ 1, and convergence order βcv
f ≥ 1 with corresponding

constant τ cvf . Furthermore, let (gcvj,Z )Z∈I(X×Y ), j = 1, . . . ,mI , denote continuous schemes
of convex relaxations of g1, . . . , gmI , respectively, in X × Y with pointwise convergence
orders γ cv

g,1 > 0, . . . , γ cv
g,mI

> 0 and corresponding constants τ cvg,1, . . . , τ
cv
g,mI

.

Suppose (xS, yS) ∈ X × Y such that g(xS, yS) < 0 (i.e. (xS, yS) is a Slater point). Then,
∃δ > 0 such that the scheme of lower bounding problems (L (Z))Z∈I(X×Y ) with
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(O(Z))Z∈I(X×Y ) :=
(

min
(x,y)∈F cv(Z)

f cvZ (x, y)
)
Z∈I(X×Y )

,

(IC (Z))Z∈I(X×Y ) := (gcvZ (Z)
)
Z∈I(X×Y )

is at least βcv
f -order convergent on

{
(x, y) : ‖(x, y) − (xS, yS)‖∞ < δ

}
.

Proof Let g j (xS, yS) = −ε j < 0, j = 1, . . . ,mI . Since g j is continuous for each j ∈
{1, . . . ,mI }, there exists δ j > 0,∀ j ∈ {1, . . . ,mI }, such that ‖(x, y) − (xS, yS)‖∞ < δ j
implies |g j (x, y) − g j (xS, yS)| < ε j (see Lemma 2). Define δ̄ := min

j∈{1,...,mI }
δ j , note that

δ̄ > 0, and let δ := δ̄
2 .

Consider Z ∈ I(X×Y )with Z∩{(x, y) : ‖(x, y) − (xS, yS)‖∞ < δ
} �= ∅ andw(Z) ≤ δ.

Similar to the proof of Corollary 2, it can be shown that

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y) ≤ τ cvf w(Z)
βcv
f .

The desired result follows by analogy to Lemma 5 by noting that the lower bounding scheme
(L (Z))Z∈I(X×Y ) has at least first-order convergence on

{
(x, y) : ‖(x, y) − (xS, yS)‖∞ < δ

}
from Theorem 1. ��

While it may appear that the neighborhood of a Slater point onwhich second-order conver-
gence of the lower bounding scheme is guaranteed by Corollary 3 can be unnecessarily small,
Example 10 shows that a stronger result cannot be deduced without additional assumptions.

A natural question is whether second-order convergence is guaranteed on X × Y when
second-order pointwise convergent schemes of (convex) relaxations of f, g1, . . . , gmI , h1,
. . . , hmE are used by the lower bounding scheme. The following example shows that even
when schemes of (convex) envelopes are used to underestimate smooth functions f, g, and
h, at most first-order convergence can be guaranteed at certain points in X × Y .

Example 10 Let X = [0, 0], Y = [−1, 1],mI = 1, and mE = 0 with f (x, y) = −y and
g(x, y) = y3. For any [0, 0] × [−ε, ε] =: Z ∈ I(X × Y ) with ε > 0, let

f cvZ (x, y) = −y, gcvZ (x, y) =
{

−0.25ε3 + 0.75ε2y, if y < 0.5ε

y3, if y ≥ 0.5ε
.

Note that the scheme ( f cvZ )Z∈I(X×Y ) has arbitrarily high pointwise convergence order on
X × Y and the scheme (gcvZ )Z∈I(X×Y ), which is the scheme of convex envelopes of g on
X × Y [19], has (at least) second-order pointwise convergence on X × Y . Also note that
(gcvZ )Z∈I(X×Y ) has arbitrarily high convergence order on X × Y .

The width of Z is w(Z) = 2ε. The optimal objective value of Problem (P) on Z is 0,
while the optimal objective of the lower bounding problem on Z is − ε

3 . Convergence at the
point (0, 0) is, therefore, at most first-order.

Despite the fact that we only have first-order convergence at the global minimizer in
Example 10, the reader can verify that the natural interval extension-based lower bounding
schemealongwith the interval bisectionbranching rule and lowest lower boundnode selection
rule is sufficient to mitigate the cluster problem for this case [15].

The following result establishes second-order convergence of a convex relaxation-based
lower bounding scheme at a feasible point (xf, yf) ∈ X × Y when second-order point-
wise convergent schemes of relaxations are used and the dual lower bounding scheme (see
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Sect. 4.2) is second-order convergent at (xf, yf). This result will be used to prove second-
order convergence of such convex relaxation-based lower bounding schemes at KKT points
in Corollary 4.

Theorem 3 Consider Problem (P), and let (xf, yf) ∈ X × Y be a feasible point. Sup-
pose the dual lower bounding scheme has convergence of order βd > 0 at (xf, yf) with a

corresponding scheme of bounded dual variables
((

μ
(xf,yf)
Z ,λ

(xf,yf)
Z

))
Z∈I(X×Y )

(not neces-

sarily optimal, but which yield βd -order convergence at (xf, yf)) with
(
μ

(xf,yf)
Z ,λ

(xf,yf)
Z

)
∈

R
mI+ × R

mE ,

∥∥∥μ(xf,yf)
Z

∥∥∥∞ ≤ μ̄ and
∥∥∥λ(xf,yf)

Z

∥∥∥∞ ≤ λ̄,∀Z ∈ I(X × Y ), for some con-

stants μ̄, λ̄ ≥ 0 (see Sect. 4.2). Let ( f cvZ )Z∈I(X×Y ), (gcvj,Z )Z∈I(X×Y ), j = 1, . . . ,mI , denote
continuous schemes of convex relaxations of f, g1, . . . , gmI , respectively, in X×Y with point-
wise convergence orders γ cv

f ≥ 1, γ cv
g,1 ≥ 1, . . . , γ cv

g,mI
≥ 1 and corresponding constants

τ cvf , τ cvg,1, . . . , τ
cv
g,mI

. Let (hcvk,Z , hcck,Z )Z∈I(X×Y ), k = 1, . . . ,mE, denote continuous schemes
of relaxations of h1, . . . , hmE , respectively, in X × Y with pointwise convergence orders
γh,1 ≥ 1, . . . , γh,mE ≥ 1 and corresponding constants τh,1, . . . , τh,mE . Then, the scheme of
lower bounding problems (L (Z))Z∈I(X×Y ) with

(O(Z))Z∈I(X×Y ) :=
(

min
(x,y)∈F cv(Z)

f cvZ (x, y)
)
Z∈I(X×Y )

,

(IC (Z))Z∈I(X×Y ) := ({(v,w) ∈ R
mI × R

mE : v = gcvZ (x, y),hcvZ (x, y) ≤ w ≤ hccZ (x, y)

for some (x, y) ∈ Z
})

Z∈I(X×Y )

is at leastmin

{
min

{
γ cv
f , min

j∈{1,...,mI }
γ cv
g, j , min

k∈{1,...,mE }γh,k

}
, βd

}
-order convergent at (xf, yf).

Proof Let β := min

{
min

{
γ cv
f , min

j∈{1,...,mI }
γ cv
g, j , min

k∈{1,...,mE }γh,k

}
, βd

}
, and let μZ :=

μ
(xf,yf)
Z ,λZ := λ

(xf,yf)
Z ,∀Z ∈ I(X × Y ), denote the scheme of dual variables corresponding

to the dual lower bounding scheme (we omit the dependence of the dual variables on (xf, yf)
for ease of exposition). Since we are concerned about the convergence order at the feasible
point (xf, yf), it suffices to show the existence of τ ≥ 0 such that for every Z ∈ I(X × Y )

with (xf, yf) ∈ Z ,

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y) ≤ τw(Z)β .

Consider Z ∈ I(X × Y ) with (xf, yf) ∈ Z . By virtue of the assumption that the dual lower
bounding scheme, with the dual variables fixed to ((μZ ,λZ ))Z∈I(X×Y ), has convergence of
order βd at (xf, yf), we have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈Z

[
f (x, y) + μT

Zg(x, y) + λT
Zh(x, y)

] ≤ τdw(Z)βd . (5)

Choose λZ ,+,λZ ,− ∈ R
mE+ such that λZ = λZ ,+ −λZ ,−, ‖λZ ,+‖∞ ≤ λ̄, and ‖λZ ,−‖∞ ≤ λ̄.

Let γ̄ : = min

{
γ cv
f , min

j∈{1,...,mI }
γ cv
g, j , min

k∈{1,...,mE }γh,k

}
.Wehave

min
(x,y)∈Z

[
f (x, y) + μT

Zg(x, y) + λT
Zh(x, y)

]− min
F cv(Z)

f cvZ (x, y)
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≤ min
(x,y)∈Z

[
f (x, y) + μT

Zg(x, y) + λT
Zh(x, y)

]

− sup
μ≥0,λ1≥0,λ2≤0

min
(x,y)∈Z

[
f cvZ (x, y) + μTgcvZ (x, y) + λT

1h
cv
Z (x, y) + λT2h

cc
Z (x, y)

]

≤ min
(x,y)∈Z

[
f (x, y) + μT

Zg(x, y) + λT
Z ,+h(x, y) − λTZ ,−h(x, y)

]

− min
(x,y)∈Z

[
f cvZ (x, y) + μT

Zg
cv
Z (x, y) + λT

Z ,+hcvZ (x, y) − λT
Z ,−hccZ (x, y)

]

≤ max
(x,y)∈Z

[(
f (x, y) − f cvZ (x, y)

)+ μT
Z

(
g(x, y) − gcvZ (x, y)

)

+ λT
Z ,+
(
h(x, y) − hcvZ (x, y)

)+ λT
Z ,−
(
hccZ (x, y) − h(x, y)

)]

≤ max
(x,y)∈Z

(
f (x, y) − f cvZ (x, y)

)+ max
(x,y)∈Zμ

T
Z

(
g(x, y) − gcvZ (x, y)

)

+ max
(x,y)∈Zλ

T
Z ,+
(
h(x, y) − hcvZ (x, y)

)+ max
(x,y)∈Zλ

T
Z ,−
(
hccZ (x, y) − h(x, y)

)

≤ τ cvf w(Z)
γ cv
f +

mI∑
j=1

μ̄τ cvg, jw(Z)
γ cv
g, j + 2

mE∑
k=1

λ̄τh,kw(Z)γh,k

≤
(

τ cvf w(X × Y )
γ cv
f −γ̄ +

mI∑
j=1

μ̄τ cvg, jw(X × Y )
γ cv
g, j−γ̄

+ 2
mE∑
k=1

λ̄τh,kw(X × Y )γh,k−γ̄

)
w(Z)γ̄ , (6)

where Step 1 follows from weak duality and Step 3 follows from Lemma 3.
Therefore, from Eqs. (5) and (6), we have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvZ (x, y)

= min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈Z

[
f (x, y) + μT

Zg(x, y) + λT
Zh(x, y)

]

+ min
(x,y)∈Z

[
f (x, y) + μT

Zg(x, y) + λT
Zh(x, y)

]− min
(x,y)∈F cv(Z)

f cvZ (x, y)

≤ τw(Z)β,

where the prefactor τ is defined as

τ :=
(

τ cvf w(X × Y )
γ cv
f −β +

mI∑
j=1

μ̄τ cvg, jw(X × Y )
γ cv
g, j−β + 2

mE∑
k=1

λ̄τh,kw(X × Y )γh,k−β

+ τdw(X × Y )βd−β

)
. ��

4.2 Duality-based branch-and-bound

In this section, we investigate the convergence order of a Lagrangian dual-based lower bound-
ing scheme. Before we define the convergence order of the scheme, the Lagrangian dual
problem is introduced and some of its properties are outlined.
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The dual problem of Problem (P) that is obtained by dualizing all of the constraints
g(x, y) ≤ 0 and h(x, y) = 0 is given by

sup
μ,λ

q(μ,λ) (D)

s.t. μ ∈ R
mI+ ,λ ∈ R

mE ,

where q : RmI+ × R
mE → R, defined by

q(μ,λ) := min
(x,y)∈X×Y

f (x, y) + μTg(x, y) + λTh(x, y), ∀(μ,λ) ∈ R
mI+ × R

mE ,

is the Lagrangian dual function. Let min (P) and sup (D) respectively denote the optimal
objective values of Problem (P) and Problem (D). Fromweak duality, we know thatmin (P) ≥
sup (D), which validates the use of Problem (D) as a lower bounding problem.

The following result shows that the lower bounds obtained by solving the Lagrangian dual
Problem (D) are stronger than those obtained by solving any convex relaxation-based lower
bounding problem.

Lemma 9 Consider Problem (P), and suppose Z ∈ I(X × Y ). Let f cvZ and gcvZ denote
(continuous) convex relaxations of f and g, respectively, on Z, and let hcvZ and hccZ
denote (continuous) convex and concave relaxations, respectively, of h on Z. Furthermore,
assume that strong duality holds for the convex relaxation-based lower bounding problem
min

F cv(Z)
f cvZ (x, y). Then the lower bound obtained by solving the Lagrangian dual problem

is at least as strong as that obtained by solving the above convex relaxation-based lower
bounding problem, i.e.,

sup
μ≥0,λ

min
(x,y)∈Z

[
f (x, y) + μTg(x, y) + λTh(x, y)

]− min
F cv(Z)

f cvZ (x, y) ≥ 0.

Proof Since strong duality holds for the convex relaxation-based lower bounding problem,
the difference between the lower bounds can be rewritten as

sup
μ≥0,λ

min
(x,y)∈Z

[
f (x, y) + μTg(x, y) + λTh(x, y)

]

− sup
μ≥0,λ1≥0,λ2≤0

min
(x,y)∈Z

[
f cvZ (x, y) + μTgcvZ (x, y) + λT

1h
cv
Z (x, y) + λT

2h
cc
Z (x, y)

]

= sup
μ≥0,λ1≥0,λ2≤0

min
(x,y)∈Z

[
f (x, y) + μTg(x, y) + λT

1h(x, y) + λT
2h(x, y)

]

− sup
μ≥0,λ1≥0,λ2≤0

min
(x,y)∈Z

[
f cvZ (x, y) + μTgcvZ (x, y) + λT

1h
cv
Z (x, y) + λT

2h
cc
Z (x, y)

]

≥ 0,

where the last step follows from the fact that ∀(x, y) ∈ Z ,μ ≥ 0,λ1 ≥ 0,λ2 ≤ 0,

f (x, y) + μTg(x, y) + λT
1h(x, y) + λT

2h(x, y)

≥ f cvZ (x, y) + μTgcvZ (x, y) + λT
1h

cv
Z (x, y) + λT2h

cc
Z (x, y). ��

The following result due to Dür [8] establishes the condition under which the dual lower
bounding problem detects infeasibility.
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Lemma 10 Consider Problem (P) (satisfying Assumption 1). We have

sup (D) = +∞ ⇐⇒ conv

([
g
h

]
(X × Y )

)
∩ (RmI− × {0}) = ∅.

Proof The result follows, in part, by replacing h(x, y) = 0with h(x, y) ≤ 0 and −h(x, y) ≤
0 and using Theorem 2 in [8]. ��

Definition 14 can be applied to analyze the convergence order of the above duality-based
lower bounding scheme as follows.

The scheme of dual lower bounding problems (L (Z))Z∈I(X×Y ) with

(O(Z))Z∈I(X×Y ) :=
(

sup
μ≥0,λ

min
(x,y)∈Z

[
f (x, y) + μTg(x, y) + λTh(x, y)

])
Z∈I(X×Y )

,

(IC (Z))Z∈I(X×Y ) :=
(
conv

([
g
h

]
(Z)

))
Z∈I(X×Y )

is thus said to have convergence of order β > 0 at

1. A feasible point (x, y) ∈ X × Y if there exists τ ≥ 0 such that for every Z ∈ I(X × Y )

with (x, y) ∈ Z ,

min
(v,w)∈F (Z)

f (v,w) − sup
μ≥0,λ

min
(v,w)∈Z

[
f (v,w) + μTg(v,w) + λTh(v,w)

] ≤ τw(Z)β .

2. An infeasible point (x, y) ∈ X ×Y if there exists τ̄ ≥ 0 such that for every Z ∈ I(X ×Y )

with (x, y) ∈ Z ,

d

([
g
h

]
(Z),R

mI− × {0}
)

− d

(
conv

([
g
h

]
(Z)

)
,R

mI− × {0}
)

≤ τ̄w(Z)β .

We associate with the dual lower bounding scheme, (L (Z))Z∈I(X×Y ), at a feasible point

(x, y), a scheme of dual variables ((μ
(x,y)
Z ,λ

(x,y)
Z ))Z∈I(X×Y ) corresponding to the solution

of the scheme of dual lower bounding problems (O(Z))Z∈I(X×Y ) with (x, y) ∈ Z (note
that sup (D) may not be attained, in which case we assume that dual variables that yield
a dual function value arbitrarily close to the supremum are available). Using Lemma 10,
we next show that if the convex relaxation-based lower bounding problem corresponding to
Problem (P) that is obtained by replacing the functions in Problem (P) with their envelopes
is infeasible, then sup (D) = +∞.

Lemma 11 Let (gcvj,Z )Z∈I(X×Y ), j = 1, . . . ,mI , denote (any) schemes of convex relaxations
of g1, . . . , gmI in X × Y and (hcvk,Z , hcck,Z )Z∈I(X×Y ), k = 1, . . . ,mE, denote (any) schemes
of relaxations of h1, . . . , hmE in X × Y . Then for each Z ∈ I(X × Y ), we have

d

([
g
h

]
(Z),R

mI− × {0}
)

≥ d

(
conv

([
g
h

]
(Z)

)
,R

mI− × {0}
)

≥ d
(
IC (Z),R

mI− × {0}) ,
where IC (Z) is defined as

IC (Z) := {
(v,w) ∈ R

mI × R
mE : v} = gcvZ (x, y),hcvZ (x, y) ≤ w ≤ hccZ (x, y)

for some (x, y) ∈ Z .
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Proof The first inequality trivially holds. To prove the second inequality, we first notice that

d
(
IC (Z),R

mI− × {0}) = d
(
ĪC (Z),R

mI− × {0}) ,
where ĪC (Z) is defined as

ĪC (Z) := {(v,w) ∈ R
mI × R

mE : v ≥ gcvZ (x, y),hcvZ (x, y) ≤ w ≤ hccZ (x, y) for some (x, y)∈ Z
}
.

Note that ĪC (Z) is a convex set since it can be represented as the direct sum of two convex

sets. Since conv

([
g
h

]
(Z)

)
is the smallest convex set that encloses

[
g
h

]
(Z), the desired result

follows. ��
Theorem 4 Consider Problem (P). Suppose strong duality holds for the scheme of convex
relaxation-based lower bounding problems for Problem (P) obtained by using the schemes
of (convex) envelopes of f, g, and h. If the assumptions of Theorem 1 hold for the functions
f, g,h, and the schemes of (convex) envelopes of f, g, and h, then the dual lower bounding
scheme is (at least) first-order convergent on X × Y . Furthermore, if the assumptions of
Theorem 2 hold for the schemes of (convex) envelopes of f, g, and h and (xf, yf) ∈ X × Y ,
then the dual lower bounding scheme is (at least) second-order convergent at (xf, yf).

Proof From Lemma 11, we have that the convergence order of the dual lower bounding
scheme at an infeasible point (x, y) ∈ X × Y is at least as high as the convergence order at
(x, y) of the convex relaxation-based lower bounding scheme obtained by using the schemes
of (convex) envelopes of f, g, and h. Lemma 9 implies that the lower bounds obtained
using the dual lower bounding scheme are at least as tight as the lower bounds obtained
using the schemes of (convex) envelopes of f, g, and h. The desired result follows from
Definition 14. ��

Note that the conclusions of Theorem 4 hold even if the schemes of relaxations of f, g, and
h do not correspond to their envelopes, so long as the (remaining) assumptions of Theorem 4
are satisfied.

Remark 10 The assumption of strong duality is in fact not required to show first-order con-
vergence of the dual lower bounding scheme when all functions in Problem (P) are Lipschitz
continuous. For this case, the proof of first-order convergence at infeasible points follows
fromLemmata 7, 8, and 11, and the proof of first-order convergence at feasible points follows
from Proposition 1 in [8].

Theorem 4 makes no assumptions on the boundedness of schemes of dual variables. This
is reflected in the application of the dual lower bounding scheme to Example 10 where the
optimal scheme of dual variables can be unbounded (note, however, that first-order conver-
gence of the dual lower bounding scheme at the global minimizer of Example 10 can be
achieved using bounded schemes of dual variables when the dual problem is not solved to
optimality). Furthermore, Example 6 shows that the convergence order of the dual lower
bounding scheme can be as low as two at (xf, yf) when the assumptions of Theorem 2 are
satisfied for the schemes of (convex) envelopes of f, g, and h (see Lemma 14).

The following result shows that in the absence of equality constraints, the dual lower
bounding scheme has arbitrarily high convergence order at unconstrained points.

Proposition 1 Consider Problem (P) with mE = 0. Suppose f and g j ,∀ j ∈ {1, . . . ,mI },
are Lipschitz continuous on X × Y . Furthermore, suppose (xS, yS) ∈ X × Y such that
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g(xS, yS) < 0 (i.e. (xS, yS) is a Slater point). The dual lower bounding scheme has arbitrarily
high convergence order at (xS, yS).

Proof The proof is relegated to Appendix A.1 since it is similar to the proof of
Corollary 2. ��
Remark 11 Proposition 1 as stated does not apply to Problem (P) with active constraints;
however, it can be modified to demonstrate second-order convergence when Problem (P)
contains active convex constraints (note that this includes affine equality constraints) if f
is twice continuously differentiable, and strong duality holds for the scheme of relaxations
of Problem (P) in which only the active (convex) constraints are included and f is replaced
by its scheme of convex envelopes (see Remark 9). Proposition 1 can also be extended to
demonstrate arbitrarily high convergence order of the dual lower bounding scheme on a
neighborhood of (xS, yS) in a manner similar to Corollary 3.

The next result shows that the dual lower bounding scheme is second-order convergent at
KKT points when the functions f, g, and h in Problem (P) are twice continuously differen-
tiable.

Theorem 5 Consider Problem (P). Suppose int(X × Y ) is nonempty, and f, g, and h
are twice continuously differentiable on int(X × Y ). Furthermore, suppose there exists
(x∗, y∗) ∈ int(X × Y ),μ∗ ∈ R

mI+ , and λ∗ ∈ R
mE such that (x∗, y∗,μ∗,λ∗) is a KKT

point for Problem (P). The dual lower bounding scheme is at least second-order convergent
at (x∗, y∗).

Proof Let L(x, y,μ,λ) := f (x, y) + μTg(x, y) + λTh(x, y) denote the Lagrangian of
Problem (P). Since we are concerned about the convergence order at the feasible point
(x∗, y∗), it suffices to show the existence of τ ≥ 0 such that for every Z ∈ I(X × Y ) with
(x∗, y∗) ∈ Z ,

min
(x,y)∈F (Z)

f (x, y) − sup
μ≥0,λ

min
(x,y)∈ZL(x, y,μ,λ) ≤ τw(Z)2.

We have

sup
μ≥0,λ

min
(x,y)∈ZL(x, y,μ,λ) ≥ min

(x,y)∈ZL(x, y,μ∗,λ∗)

= min
(x,y)∈Z

[
L(x∗, y∗,μ∗,λ∗) + ∇xL(x∗, y∗,μ∗,λ∗)T(x − x∗)

+∇yL(x∗, y∗,μ∗,λ∗)T(y − y∗) − O(w(Z)2)
]

= min
(x,y)∈Z

[
f (x∗, y∗) − O(w(Z)2)

]

≥ f (x∗, y∗) − O(w(Z)2).

Note that Step 3 above uses L(x∗, y∗,μ∗,λ∗) = f (x∗, y∗),∇xL(x∗, y∗,μ∗,λ∗) = 0, and
∇yL(x∗, y∗,μ∗,λ∗) = 0 by virtue of the assumption that (x∗, y∗,μ∗,λ∗) is a KKT point
for Problem (P). Therefore,

min
(x,y)∈F (Z)

f (x, y) − sup
μ≥0,λ

min
(x,y)∈ZL(x, y,μ,λ) ≤ O(w(Z)2),

which establishes the existence of τ for all Z ∈ I(X × Y ) with (x∗, y∗) ∈ Z by anal-
ogy to Lemma 5 since the dual lower bounding scheme is at least first-order convergent at
(x∗, y∗). ��
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A corollary of Theorems 3 and 5 is that second-order convergence atKKTpoints is guaran-
teed for convex relaxation-based lower bounding schemes in which second-order pointwise
convergent schemes of relaxations are used.

Corollary 4 Consider Problem (P). Suppose int(X × Y ) is nonempty and f, g, and h
are twice continuously differentiable on int(X × Y ). Furthermore, suppose there exists
(x∗, y∗) ∈ int(X × Y ),μ∗ ∈ R

mI+ , and λ∗ ∈ R
mE such that (x∗, y∗,μ∗,λ∗) is a KKT

point for Problem (P). Let ( f cvZ )Z∈I(X×Y ), (gcvj,Z )Z∈I(X×Y ), j = 1, . . . ,mI , denote continu-
ous schemes of convex relaxations of f, g1, . . . , gmI , respectively, in X × Y with pointwise
convergence orders γ cv

f ≥ 2, γ cv
g,1 ≥ 2, . . . , γ cv

g,mI
≥ 2 and corresponding constants

τ cvf , τ cvg,1, . . . , τ
cv
g,mI

. Let (hcvk,Z , hcck,Z )Z∈I(X×Y ), k = 1, . . . ,mE, denote continuous schemes
of relaxations of h1, . . . , hmE , respectively, in X × Y with pointwise convergence orders
γh,1 ≥ 2, . . . , γh,mE ≥ 2 and corresponding constants τh,1, . . . , τh,mE . Then, the resulting
scheme of convex relaxation-based lower bounding problems for Problem (P) is at least
second-order convergent at (x∗, y∗).

Proof The result holds as a consequence of Theorems 3 and 5, by using μZ = μ∗,λZ =
λ∗, μ̄ = ‖μ∗‖∞, λ̄ = ‖λ∗‖∞ in Theorem 3. ��

The following example shows that the convergence order may be as low as two under the
assumptions of Theorem 5.

Example 11 Let X = [−2, 2], Y = [0, 3],mI = 1, and mE = 1 with f (x, y) = x +
y, g(x, y) = −y2 + y + 2, and h(x, y) = x . Consider intervals [0, 0] × [2 − ε, 2 + ε] =:
Z ∈ I(X × Y ) with 0 < ε ≤ 1. Note that w(Z) = 2ε, and that

(
0, 2, 1

3 ,−1
)
is a KKT point

for Problem (P). The optimal objective value of Problem (P) on Z is 2, while the optimal
objective value of the Lagrangian dual-based lower bounding problem on Z can be derived
as

O(Z) = sup
μ≥0,λ

min
(x,y)∈Z x + y + μ

(−y2 + y + 2
)+ λx

= sup
μ≥0

min
{
(2 − ε) + μ

(−(2 − ε)2 + (2 − ε) + 2
)
,

(2 + ε) + μ
(−(2 + ε)2 + (2 + ε) + 2

)}
= sup

μ≥0
min

{
(2 − ε) + μ

(
3ε − ε2

)
, (2 + ε) + μ

(−3ε − ε2
)}

= (2 − ε) + 1

3

(
3ε − ε2

)

= 2 − ε2

3
,

where Step 2 follows from the fact that the minimum of a concave function on an interval
is attained at one of its endpoints, and the value of μ in Step 4 is obtained by equating the
two arguments of the inner min function in Step 3. Convergence of the dual lower bounding
scheme at the point (0, 2) is, therefore, at most second-order.

Finally, we show that the dual lower bounding scheme is (at least) first-order convergent
even when the dual problem is not solved to optimality.

Theorem 6 Consider Problem (P). Suppose f, g j , j = 1, . . . ,mI , and hk, k = 1, . . . ,mE,
are Lipschitz continuous on X×Y with Lipschitz constants M f , Mg,1, . . . , Mg,mI , Mh,1, . . . ,
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Mh,mE , respectively. Furthermore, suppose the dual lower bounding scheme involves at
most nd ≥ 1 iterations of an algorithm applied to the dual at each node of the branch-and-
bound tree. In addition, suppose the branch-and-bound algorithmuses first-order (Hausdorff)

convergent schemes of constant relaxations
(
gLj,Z , gUj,Z

)
Z∈I(X×Y )

, j = 1, . . . ,mI , on

X × Y to overestimate
(
g j (Z)

)
Z∈I(X×Y )

and first-order (Hausdorff) convergent schemes

of constant relaxations
(
hLk,Z , hUk,Z

)
Z∈I(X×Y )

, k = 1, . . . ,mE, on X × Y to overestimate(
hk(Z)

)
Z∈I(X×Y )

(such schemes of constant relaxations can be obtained, for example, using
interval arithmetic [22]), sets μ j = 0 at each iteration of the algorithm applied to the dual
on Z if gUj,Z < 0 (i.e., when inequality constraint j is determined to be inactive on Z by

gUj,Z ), and determines the dual lower bounding problem on Z to be infeasible either when

gLj,Z > 0 for any j ∈ {1, . . . ,mI } (i.e., when inequality constraint j is determined to be

unsatisfiable on Z by gLj,Z ), or when 0 /∈
[
hLk,Z , hUk,Z

]
for any k ∈ {1, . . . ,mE } (i.e., when

equality constraint k is determined to be unsatisfiable on Z by (hLk,Z , hUk,Z )). Assume that
the absolute values of the schemes of dual variables generated by the dual lower bounding
scheme are bounded from above by M∞. Then the dual lower bounding scheme is at least
first-order convergent on X × Y .

Proof From the assumption that
(
gLj,Z , gUj,Z

)
Z∈I(X×Y )

, j = 1, . . . ,mI , and(
hLk,Z , hUk,Z

)
Z∈I(X×Y )

, k = 1, . . . ,mE , are first-order convergent on X × Y , the deter-

mination of infeasibility of the dual lower bounding problem on Z if gLj,Z > 0 for any

j ∈ {1, . . . ,mI }, or if 0 /∈
[
hLk,Z , hUk,Z

]
for any k ∈ {1, . . . ,mE }, Proposition 1 in [6], and

Lemma 8, we conclude that the dual lower bounding scheme has at least first-order conver-
gence at infeasible points (although the dual lower bounding scheme detects infeasibility of
infeasible points in X ×Y at least as quickly as any convex relaxation-based lower bounding

scheme (see Lemma 11), we assume that the schemes
(
gLj,Z , gUj,Z

)
Z∈I(X×Y )

, j = 1, . . . ,mI ,

and
(
hLk,Z , hUk,Z

)
Z∈I(X×Y )

, k = 1, . . . ,mE , are available to detect infeasibility since we are

only allowed to use at most nd iterations of an algorithm applied to the dual).
Next, supposeF (X ×Y ) �= ∅ and Z ∈ I(X ×Y )with Z ∩F (X ×Y ) �= ∅. Let JZ denote

the set of inequality constraints that are potentially active at some point in Z as determined

by
(
gLj,Z , gUj,Z

)
, i.e. JZ :=

{
j ∈ {1, . . . ,mI } : gUj,Z ≥ 0

}
. Let (μ̄Z , λ̄Z ) ∈ R

mI+ × R
mE

denote the pair of dual variables corresponding to the dual lower bound on Z after at most
nd iterations of an algorithm applied to the dual with μ̄ j,Z = 0,∀ j ∈ {1, . . . ,mI }\JZ , and
let (x̄Z , ȳZ ) ∈ argmin

(x,y)∈Z
f (x, y) + μ̄T

Zg(x, y) + λ̄
T
Zh(x, y). Note that the condition μ̄ j,Z =

0,∀ j ∈ {1, . . . ,mI }\JZ can be guaranteed by a suitable initialization of the dual variables
and by suitably modifying the dual variables generated by the algorithm applied to the dual
(this modification of the dual lower bounding scheme is once again necessitated by the
assumption that at most nd iterations of an algorithm applied to the dual are used). For each
j ∈ JZ , we have

gUj,Z − max
(x,y)∈Z g j (x, y) ≤ τ jw(Z)
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for some constant τ j ≥ 0 by virtue of the fact that the scheme of constant concave relaxations(
gUj,Z

)
Z∈I(X×Y )

has first-order convergence on X × Y . Since gUj,Z ≥ 0,∀ j ∈ JZ , and g j is

Lipschitz continuous on X × Y , this implies

g j (x, y) ≥ − (τ j + Mg, j
√
nx + ny

)
w(Z), ∀(x, y) ∈ Z , ∀ j ∈ JZ .

Let (x∗
Z , y∗

Z ) ∈ argmin
(x,y)∈F (Z)

f (x, y). We have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈Z

[
f (x, y) + μ̄T

Zg (x, y) + λ̄
T
Zh (x, y)

]

= f
(
x∗
Z , y∗

Z

)−
[
f (x̄Z , ȳZ ) + μ̄T

Zg (x̄Z , ȳZ ) + λ̄
T
Zh (x̄Z , ȳZ )

]

= (
f
(
x∗
Z , y∗

Z

)− f (x̄Z , ȳZ )
)−

∑
j∈JZ

μ̄ j,Z g j (x̄Z , ȳZ ) + λ̄
T
Z

(
h
(
x∗
Z , y∗

Z

)− h (x̄Z , ȳZ )
)

≤ M f ‖
(
x∗
Z , y∗

Z

)− (x̄Z , ȳZ )‖ +
∑
j∈JZ

μ̄ j,Z
(
τ j + Mg, j

√
nx + ny

)
w (Z)

+
mE∑
k=1

∣∣λ̄k,Z ∣∣Mh,k‖
(
x∗
Z , y∗

Z

)− (x̄Z , ȳZ )‖

≤
⎛
⎝M f

√
nx + ny +

∑
j∈JZ

M∞
(
τ j + Mg, j

√
nx + ny

)+
mE∑
k=1

M∞Mh,k
√
nx + ny

⎞
⎠w (Z)

≤
⎛
⎝M f

√
nx + ny +

mI∑
j=1

M∞
(
τ j + Mg, j

√
nx + ny

)+
mE∑
k=1

M∞Mh,k
√
nx + ny

⎞
⎠w (Z) ,

which establishes the desired result. ��

5 Reduced-space branch-and-bound algorithms

In this section, we present some results on the convergence orders of some widely-applicable
reduced-space lower bounding schemes in the literature [9,10] for Problem (P) when only
the set Y may be partitioned during the course of the algorithm. This section is divided
into two parts. First, we consider a convex relaxation-based reduced-space lower bounding
scheme for a subclass of Problem (P) [10] and investigate its convergence order. Next, we
look at the convergence order of a duality-based reduced-space lower bounding scheme [9,
Section 3.3] for Problem (P). Algorithm 1 outlines a generic reduced-space branch-and-
bound algorithm for Problem (P). It should be noted that Algorithm 1 merely provides the
backbone of a generic reduced-space branch-and-bound algorithm. In practice, the order in
which the subproblems are solved may vary and additional subproblems may be solved to
speed up the convergence of the algorithm. The reader is directed to references [9] and [10]
for two widely-applicable instances of Algorithm 1, and for examples of their application.
In the remainder of this section, we investigate the convergence orders of the reduced-space
lower bounding schemes described in [9] and [10].
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Algorithm 1 A generic reduced-space branch-and-bound algorithm

Initialize:

1. Iteration counter k = 0, bounds X0 and Y 0 on x and y, respectively, after the optional
application of preprocessing techniques to the input data, and tolerances ε > 0, εl > 0,
and εu > 0 such that εl + εu ≤ ε.

2. Domain of the root node M0 := X0 × Y 0, and the initial partition P0 = {M0}.
3. Current best feasible point {(xf, yf)} = ∅, upper bound UBD = +∞, lower bound

for the root node LBD0 = −∞, minimum {(x∗, y∗)} = ∅, and the optimal objective
function value UBD∗ = +∞.

repeat

1. If Pk = ∅, terminate. Otherwise, pick n ∈ {
n ∈ N ∪ {0} : Mn ∈ Pk

}
using

some node selection heuristic and set Pk+1 ← Pk\{Mn}.
2. (Optional) Solve the (reduced-space) upper bounding problem on Mn with a toler-

ance of εu to try and determine a feasible point. UpdateUBD, (xf, yf) if a feasible
solution better than the current best solution is obtained.

3. (Optional) Apply finite reduced-space bounds-tightening techniques to obtain
X̄n ⊂ Xn, Ȳ n ⊂ Yn . Set Xn ← X̄n, Yn ← Ȳ n . If either Xn or Yn is empty,
goto Step 6.

4. Solve the reduced-space lower bounding problem on Mn to εl -optimality to obtain
the lower bound LBDn (if the lower bounding problem on Mn is infeasible, set
LBDn = +∞). If node n can be fathomed, goto Step 6.

5. Partition Mn into Mn1 and Mn2 by branching only on the Y -space. Set Pk+1 ←
Pk+1 ∪ {Mn1} ∪ {Mn2}, LBDn1 = LBDn2 = LBDn .

6. Set Pk+1 ← Pk+1\ {Mp ∈ Pk+1 : LBDp ≥ UBD − ε
}
, k ← k + 1.

until Pk = ∅
Set UBD∗ = UBD and (x∗, y∗) = (xf, yf) if UBD < +∞.

5.1 Convex relaxation-based branch-and-bound for problems with special
structure

Epperly and Pistikopoulos [10] proposed a reduced-space branch-and-bound algorithm for
Problem (P) when mE = 0 (note that this condition can be relaxed as detailed below), and
the functions f and g j ,∀ j ∈ {1, . . . ,mI }, in Problem (P) are each of the form

w(x, y) = wA(x) +
∑
i∈Q

wB
i (x)wC

i (y) + wD(y), (W)

where Q is a finite set of indices, and the functions wA,wB ,wC , and wD satisfy:

1. wA and wB are convex on X .
2. wC and wD are continuous on Y .
3. Strongly consistent convex and concave relaxations are available for wC and wD on Y .
4. wB and wC have continuous tight bounds.
5. For each i ∈ Q, at least one of the following two conditions must hold:

a. wB
i (x) = cTi x for some constant ci ∈ R

nx ,
b. wC

i (y) ≥ 0 for all y ∈ Y .
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Epperly and Pistikopoulos [10] state that equality constraints can be equivalently refor-
mulated using pairs of inequalities; however, the above assumptions restrict the functional
forms of the equality constraints hk, k = 1, . . . ,mE , to

hk(x, y) =
∑
i∈Q

(
cTi x
)
wC
i (y) + wD(y). (Weq)

Suppose for each Z ∈ IY , we associate an interval X (Z) such that �X ⊃ X (Z) ⊃ FX (Z),
where �X denotes the interval hull of X (note that we make the implicit assumption (see
Remark 2) that X is an interval in this section). Assumption 3 can be restated as follows:
there exists a continuous scheme, (w

C,cv
i,Z , w

C,cc
i,Z )Z∈IY , of relaxations of wC

i , i ∈ Q, in Y

with pointwise convergence order γ C
i > 0, and there exists a continuous scheme of con-

vex relaxations, (w
D,cv
Z )Z∈IY , of wD in Y with pointwise convergence order γ D,cv > 0.

Assumption 4 can be replaced by the following: there exist schemes of constant relaxations
(w

B,L
i,Z , w

B,U
i,Z )Z∈I�X and (w

C,L
i,Z , w

C,U
i,Z )Z∈IY , i ∈ Q, of wB

i and wC
i in X and Y , respectively,

with (Hausdorff) convergence orders β
B,c
i > 0 and β

C,c
i > 0. In addition, we assume that

the range order of wC
i ,∀i ∈ Q, is greater than zero on Y (cf. Lemma 12).

Under the above assumptions, Epperly and Pistikopoulos [10] show that underestimating
each functionw(x, y)of the form (W)using the scheme (wcv

X (Z)×Z )Z∈IY of convex relaxations
defined by

wcv
X (Z)×Z (x, y) = wA(x) +

∑
i∈Q

w
BC,cv
i,X (Z)×Z (x, y) + w

D,cv
Z (y), (Wcv)

where, for each i ∈ Q, the scheme of convex relaxations (w
BC,cv
i,X (Z)×Z )Z∈IY is obtained using

McCormick’s product rule [20] as

w
BC,cv
i,X (Z)×Z (x, y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎨
⎩

w
B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z ,

w
B,L
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,L
i,Z − w

B,L
i,X (Z)w

C,L
i,Z

⎫⎬
⎭ , if w

B,L
i,X (Z) ≥ 0

max

⎧⎨
⎩

w
B,U
i,X (Z)w

C,cc
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z ,

w
B,L
i,X (Z)w

C,cc
i,Z (y) + wB

i (x)wC,L
i,Z − w

B,L
i,X (Z)w

C,L
i,Z

⎫⎬
⎭ , if w

B,U
i,X (Z) < 0

max

⎧⎨
⎩

w
B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z ,

w
B,L
i,X (Z)w

C,cc
i,Z (y) + wB

i (x)wC,L
i,Z − w

B,L
i,X (Z)w

C,L
i,Z

⎫⎬
⎭ , otherwise

,

yields a convergent reduced-space lower bounding scheme with any accumulation point of
the sequence of lower bounding solutions solving Problem (P) when the subdivision process
is exhaustive on Y and the selection procedure is bound improving.

Before we investigate the convergence order of the reduced-space lower bounding scheme
in [10], we look at the propagation of the convergence orders of the relaxation schemes
(w

B,L
i,Z , w

B,U
i,Z )Z∈I�X , (w

C,cv
i,Z , w

C,cc
i,Z )Z∈IY , (w

C,L
i,Z , w

C,U
i,Z )Z∈IY ,∀i ∈ Q, and (w

D,cv
Z )Z∈IY to

the convergence order of the reduced-space scheme of convex relaxations (wcv
X (Z)×Z )Z∈IY .

Note that unless otherwise specified, we simply use X (Z) = �X (= X),∀Z ∈ IY . The
following result provides sufficient conditions for the scheme of convex relaxations defined
by (Wcv) to have pointwise convergence of a given order on Y .
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Lemma 12 Let X ⊂ R
nx , Y ⊂ R

ny be nonempty compact convex sets and f : X × Y → R

be a function of the form (W) such that

f : X × Y � (x, y) �−→ wA(x) +
∑
i∈Q

wB
i (x)wC

i (y) + wD(y).

Assume that wA, wB
i ,∀i ∈ Q, and wD are continuous, and for each i ∈ Q, wC

i has

range of order αC
i ≥ 1 on Y with corresponding constant τ

C,r
i . Let (w

C,cv
i,Z , w

C,cc
i,Z )Z∈IY

and (w
D,cv
Z )Z∈IY respectively denote continuous schemes of relaxations of wC

i , i ∈ Q, and
wD in Y with pointwise convergence orders γ C

i ≥ 1 and γ D,cv ≥ 1 and corresponding

constants τCi and τ D,cv. Let (wB,L
i,Z , w

B,U
i,Z )Z∈I�X and (w

C,L
i,Z , w

C,U
i,Z )Z∈IY respectively denote

schemes of constant relaxations of wB
i in �X and wC

i in Y,∀i ∈ Q, with (Hausdorff) con-

vergence orders β
B,c
i > 0 and β

C,c
i ≥ 1 and corresponding constants τ

B,c
i and τ

C,c
i . Then

the continuous scheme of convex relaxations ( f cvX (Z)×Z )Z∈IY of the form (Wcv) defined by

f cvX (Z)×Z (x, y) := wA(x) +
∑
i∈Q

w
BC,cv
i,X (Z)×Z (x, y) + w

D,cv
Z (y), ∀(x, y) ∈ X (Z) × Z ,

has pointwise convergence of order at least min

{
min
i∈Q

{
min

{
αC
i , β

C,c
i , γ C

i

}}
, γ D,cv

}
on

Y .

Proof From Eq. (Wcv), we have for each (x, y) ∈ X (Z) × Z :

f (x, y) − f cvX (Z)×Z (x, y) =
⎛
⎝wA(x) +

∑
i∈Q

wB
i (x)wC

i (y) + wD(y)

⎞
⎠

−
⎛
⎝wA(x) +

∑
i∈Q

w
BC,cv
i,X (Z)×Z (x, y) + w

D,cv
Z (y)

⎞
⎠

=
∑
i∈Q

(
wB
i (x)wC

i (y) − w
BC,cv
i,X (Z)×Z (x, y)

)

+
(
wD(y) − w

D,cv
Z (y)

)
.

Depending on whether w
B,L
i,X (Z) ≥ 0, wB,U

i,X (Z) < 0, or 0 ∈
(
w

B,L
i,X (Z), w

B,U
i,X (Z)

]
for each i ∈ Q,

we have that
(
wB
i (x)wC

i (y) − w
BC,cv
i,X (Z)×Z (x, y)

)
is bounded from above either by

[
wB
i (x)wC

i (y) −
(
w

B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

)]
,

or by

[
wB
i (x)wC

i (y) −
(
w

B,U
i,X (Z)w

C,cc
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

)]

for each (x, y) ∈ X (Z) × Z . Consequently, it is sufficient to show the existence of constants
τ1, τ2 ≥ 0 such that
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max
(x,y)∈X (Z)×Z

∣∣∣∣∣∣
⎛
⎝wA(x) +

∑
i∈Q

wB
i (x)wC

i (y) + wD(y)

⎞
⎠

−
⎛
⎝wA(x) +

∑
i∈Q

(
w

B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

)
+ w

D,cv
Z (y)

⎞
⎠
∣∣∣∣∣∣

≤ τ1w(Z)γ

and

max
(x,y)∈X (Z)×Z

∣∣∣∣∣∣
⎛
⎝wA(x) +

∑
i∈Q

wB
i (x)wC

i (y) + wD(y)

⎞
⎠

−
⎛
⎝wA(x) +

∑
i∈Q

(
w

B,U
i,X (Z)w

C,cc
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

)
+ w

D,cv
Z (y)

⎞
⎠
∣∣∣∣∣∣

≤ τ2w(Z)γ ,

where γ := min

{
min
i∈Q

{
min

{
αC
i , β

C,c
i , γ C

i

}}
, γ D,cv

}
, to prove that ( f cvX (Z)×Z )Z∈IY con-

verges pointwise to f with order γ on Y . The ensuing arguments prove the existence of τ1;
the existence of τ2 can be proven analogously.

We have ∀(x, y) ∈ X (Z) × Z :⎛
⎝
⎛
⎝wA(x) +

∑
i∈Q

wB
i (x)wC

i (y) + wD(y)

⎞
⎠

−
⎛
⎝wA(x) +

∑
i∈Q

(
w

B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

)
+ w

D,cv
Z (y)

⎞
⎠
⎞
⎠

=
⎛
⎝∑

i∈Q
wB
i (x)wC

i (y) −
(
w

B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

)⎞⎠

+
(
wD(y) − w

D,cv
Z (y)

)
. (7)

Note that
∣∣∣wC

i (y) − w
C,U
i,Z

∣∣∣ can be bounded from above as

∣∣∣wC
i (y) − w

C,U
i,Z

∣∣∣ =
∣∣∣∣
(

wC
i (y) − max

y∈Z wC
i (y)

)
+
(
max
y∈Z wC

i (y) − w
C,U
i,Z

)∣∣∣∣
≤
∣∣∣∣wC

i (y) − max
y∈Z wC

i (y)

∣∣∣∣+
∣∣∣∣max
y∈Z wC

i (y) − w
C,U
i,Z

∣∣∣∣
≤
(

τ
C,r
i w(Z)

αC
i −min

{
αC
i ,β

C,c
i

}

+ τ
C,c
i w(Z)

β
C,c
i −min

{
αC
i ,β

C,c
i

})
w(Z)

min
{
αC
i ,β

C,c
i

}

≤ MC
i w(Z)β

C,r
i , ∀y ∈ Z ,
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with MC
i := τ

C,r
i w(Y )α

C
i −β

C,r
i + τ

C,c
i w(Y )β

C,c
i −β

C,r
i and β

C,r
i := min

{
αC
i , β

C,c
i

}
.

The first term in Eq. (7) can be bounded as
∑
i∈Q

(
wB
i (x)wC

i (y) −
(
w

B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

))
(8)

=
∑
i∈Q

[(
wB
i (x) − w

B,U
i,X (Z)

) (
wC
i (y) − w

C,U
i,Z

)
+ w

B,U
i,X (Z)

(
wC
i (y) − w

C,cv
i,Z (y)

)]

≤
∑
i∈Q

∣∣∣wB
i (x) − w

B,U
i,X (Z)

∣∣∣
∣∣∣wC

i (y) − w
C,U
i,Z

∣∣∣+
∣∣∣wB,U

i,X (Z)

(
wC
i (y) − w

C,cv
i,Z (y)

)∣∣∣
≤
∑
i∈Q

MBC
i w(Z)γ

BC
i

≤ MBCw(Z)γ
BC

, ∀(x, y) ∈ X (Z) × Z ,

where the constants MBC , γ BC , and MBC
i , γ BC

i ,∀i ∈ Q, can be computed as

MBC :=
∑
i∈Q

MBC
i w(Y )γ

BC
i −γ BC

, γ BC := min
i∈Q γ BC

i , γ BC
i := min

{
β
C,r
i , γ C

i

}
,

MBC
i :=

[
MB,1

i MC
i w(Y )β

C,r
i −γ BC

i + MB,2
i τCi w(Y )γ

C
i −γ BC

i

]
,

MB,1
i := max

x∈X wB
i (x) − min

x∈X wB
i (x) + τ

B,c
i w(X)β

B,c
i ,

MB,2
i := max

x∈X wB
i (x) + τ

B,c
i w(X)β

B,c
i .

The second term in Eq. (7) is simply bounded as

wD(y) − w
D,cv
Z (y) ≤ τ D,cvw(Z)γ

D,cv
, ∀y ∈ Z . (9)

From Eqs. (8) and (9), we have

max
(x,y)∈X (Z)×Z

∣∣∣∣∣∣
⎛
⎝wA(x) +

∑
i∈Q

wB
i (x)wC

i (y) + wD(y)

⎞
⎠

−
⎛
⎝wA(x) +

∑
i∈Q

(
w

B,U
i,X (Z)w

C,cv
i,Z (y) + wB

i (x)wC,U
i,Z − w

B,U
i,X (Z)w

C,U
i,Z

)
+ w

D,cv
Z (y)

⎞
⎠
∣∣∣∣∣∣

≤
(
MBCw(Y )γ

BC−γ + τ D,cvw(Y )γ
D,cv−γ

)
w(Z)γ ,

which proves the existence of τ1. ��
The following remark is in order.

Remark 12 1. Suppose wC
i is Lipschitz continuous on Y for each i ∈ Q. We then have

αC
i ≥ 1,∀i ∈ Q. If γ C

i ≥ 1 and β
C,c
i ≥ 1,∀i ∈ Q, and γ D,cv ≥ 1, we have from

Lemma 12 that ( f cvX (Z)×Z )Z∈IY has at least first-order convergence on Y .
2. Let X = [1, 2], Y = [−1, 1], and f (x, y) = xy. For any [−ε, ε] =: Z ∈ IY with ε > 0,

consider the scheme of convex relaxations ( f cvX (Z)×Z )Z∈IY of f in Y with

f cvX (Z)×Z (x, y) = max{y − εx + ε, 2y + εx − 2ε}.
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The above scheme corresponds to the tightest possible schemeof convex relaxations in the
reduced-space, but has at most first-order pointwise convergence on Y . This is in contrast
to Theorem 10 in [5] where the scheme of convex envelopes of any twice continuously
differentiable function was shown to have pointwise convergence order of at least two
on X × Y . Note that if Q = ∅, the pointwise convergence order of the scheme of convex
relaxations ( f cvX (Z)×Z )Z∈IY is dictated by the pointwise convergence order of the scheme

(w
D,cv
Z )Z∈IY , and second-order pointwise convergenceof ( f cvX (Z)×Z )Z∈IY canbe achieved

byusing the schemeof convex envelopes ofwD ifwD is twice continuously differentiable.
Also note that Theorem 2 in [5], which states that the pointwise convergence order of a
scheme of relaxations of a nonlinear twice continuously differentiable function can be at
most two on X × Y , naturally holds over Y as well.

The following result establishes a lower bound on the convergence order of the reduced-
space lower bounding scheme proposed in [10] at infeasible points.

Lemma 13 Consider Problem (P), and suppose functions g j , j = 1, . . . ,mI , are each
of the form (W) and functions hk, k = 1, . . . ,mE, are each of the form (Weq). Let
(gcvj,X (Z)×Z )Z∈IY , j = 1, . . . ,mI , denote continuous schemes of convex relaxations of
g1, . . . , gmI , respectively, in Y with pointwise convergence orders γ cv

g,1 > 0, . . . , γ cv
g,mI

> 0
and corresponding constants τ cvg,1, . . . , τ

cv
g,mI

, and let (hcvk,X (Z)×Z , hcck,X (Z)×Z )Z∈IY , k =
1, . . . ,mE, denote continuous schemes of relaxations of h1, . . . , hmE , respectively, in Y
with pointwise convergence orders γh,1 > 0, . . . , γh,mE > 0 and corresponding constants
τh,1, . . . , τh,mE . Then, there exists τ̄ ≥ 0 such that for every Z ∈ IY

d

([
g
h

]
(X (Z) × Z),R

mI− × {0}
)

− d
(
IC (Z),R

mI− × {0}) ≤ τ̄w(Z)β,

where IC (Z) is defined as

IC (Z) :=
{
(v,w) ∈ R

mI × R
mE : v=gcvX (Z)×Z (x, y),hcvX (Z)×Z (x, y)≤w≤hccX (Z)×Z (x, y)

for some (x, y) ∈ X (Z) × Z
}

and β is defined as

β := min

{
min

j∈{1,...,mI }
γ cv
g, j , min

k∈{1,...,mE }γh,k

}
.

Proof The proof is similar to that of Lemma 8 and is therefore omitted. ��
Definition 15 (Feasible point in the reduced-space) Consider Problem (P). A point y ∈ Y
is said to be feasible (in the reduced-space) if there exists x ∈ X such that (x, y) is feasible
for Problem (P).

The following result establishes first-order convergence of the reduced-space lower bound-
ing schemeproposed in [10] at a feasible point in the reduced-spacewhenfirst-order pointwise
convergent schemes of relaxations are used and the reduced-space dual lower bounding
scheme (see Sect. 5.2) is first-order convergent.

Theorem 7 Consider Problem (P). Suppose the functions f and g j , j = 1, . . . ,mI , are
each of the form (W) and functions hk, k = 1, . . . ,mE, are each of the formWeq). Let yf ∈ Y
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be a feasible point in the reduced-space for Problem (P). Suppose the reduced-space dual
lower bounding scheme (see Sect. 5.2) has convergence of order βd at yf and a corresponding

schemeof dual variables
((

μ
yf

Z ,λ
yf

Z

))
Z∈IY (not necessarily optimal, butwhich yieldβd -order

convergence at yf) with
(
μ
yf

Z ,λ
yf

Z

)
∈ R

mI+ ×R
mE ,

∥∥∥μyf

Z

∥∥∥∞ ≤ μ̄ and
∥∥∥λyf

Z

∥∥∥∞ ≤ λ̄,∀Z ∈ IY ,

for some constants μ̄, λ̄ ≥ 0. Let ( f cvX (Z)×Z )Z∈IY , (gcvj,X (Z)×Z )Z∈IY , j = 1, . . . ,mI , denote
continuous schemes of convex relaxations of f, g1, . . . , gmI , respectively, in Y with point-
wise convergence orders γ cv

f ≥ 1, γ cv
g,1 ≥ 1, . . . , γ cv

g,mI
≥ 1 and corresponding constants

τ cvf , τ cvg,1, . . . , τ
cv
g,mI

. Let (hcvk,X (Z)×Z , hcck,X (Z)×Z )Z∈IY , k = 1, . . . ,mE, denote continuous
schemes of relaxations of h1, . . . , hmE , respectively, in Y with pointwise convergence orders
γh,1 ≥ 1, . . . , γh,mE ≥ 1 and corresponding constants τh,1, . . . , τh,mE . Then, the scheme of
lower bounding problems (L (Z))Z∈IY with

(O(Z))Z∈IY :=
(

min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)
)
Z∈IY

,

(IC (Z))Z∈IY :=
({

(v,w) ∈ R
mI × R

mE : v = gcvX (Z)×Z (x, y),hcvX (Z)×Z (x, y) ≤ w ≤ hccX (Z)×Z (x, y)

for some (x, z) ∈ X (Z) × Z
})

Z∈IY

is at least min

{
min

{
γ cv
f , min

j∈{1,...,mI }
γ cv
g, j , min

k∈{1,...,mE }γh,k

}
, βd

}
-order convergent at yf.

Proof The proof is similar to that of Theorem 3 and is therefore omitted. ��
Definition 16 (Unconstrained point in the reduced-space) Consider Problem (P) withmE =
0. A point y ∈ Y is said to be unconstrained (in the reduced-space) if there exists δ > 0 such
that ∀z ∈ Y with ‖z − y‖ < δ, we have g(x, z) < 0,∀x ∈ X .

The next result establishes first-order convergence of the reduced-space lower bounding
scheme proposed in [10] at unconstrained points in the reduced-space when a first-order
convergent scheme of relaxations of the objective is used by the (convergent) lower bounding
scheme.

Proposition 2 Consider Problem (P) with mE = 0. Suppose the functions f and g j , j =
1, . . . ,mI , are each of the form (W). Let ( f cvX (Z)×Z )Z∈IY denote a continuous scheme of
convex relaxations of f in Y with convergence order βcv

f > 0 and corresponding constant
τ cvf , and (gcvj,X (Z)×Z )Z∈IY , j = 1, . . . ,mI , denote continuous schemes of convex relaxations
of g1, . . . , gmI , respectively, in Y with pointwise convergence orders γ cv

g,1 > 0, . . . , γ cv
g,mI

> 0
and corresponding constants τ cvg,1, . . . , τ

cv
g,mI

.

Suppose yS ∈ Y is an unconstrained point in the reduced-space, and the scheme of lower
bounding problems (L (Z))Z∈IY with

(O(Z))Z∈IY :=
(

min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)
)
Z∈IY

,

(IC (Z))Z∈IY :=
(
gcvX (Z)×Z (X (Z) × Z)

)
Z∈IY

has convergence of order β ∈ (0, βcv
f ] at yS. Then the scheme of lower bounding problems

(L (Z))Z∈IY is at least βcv
f -order convergent at y

S.

Proof The proof is relegated to Appendix A.2 since it is similar to the proof of
Corollary 2. ��
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Note that Proposition 2 can be generalized in a manner similar to Corollary 3 to show that
the above lower bounding scheme has βcv

f -order convergence on a neighborhood of y
S.

The following example shows that the convergence order of the reduced-space lower
bounding scheme is dictated by the convergence order, βcv

f , of the scheme ( f cvX (Z)×Z )Z∈IY
under the assumptions of Proposition 2.

Example 12 Let X = [−1, 0.1], Y = [−1, 1],mI = 1, andmE = 0 with f (x, y) = x2+ y2

and g(x, y) = x + y − 0.5. For any [yL, yU] =: Z ∈ IY , let

f cvX (Z)×Z (x, y) =
{
x2 − (yU − yL)3, if 0 ∈ [yL, yU]
x2 + min

{
(yL)2, (yU)2

}− (yU − yL)3, otherwise
,

gcvX (Z)×Z (x, y) = x + y − 0.5.

The scheme ( f cvX (Z)×Z )Z∈IY has first-order pointwise convergence on Y and third-order con-
vergence on Y , while the scheme (gcvX (Z)×Z )Z∈IY has arbitrarily high pointwise convergence
order on Y .

Let yL = −ε, yU = ε with 0 < ε ≤ 0.1. The width of Z is w(Z) = 2ε. The optimal
objective value of Problem (P) on Z is 0, while the optimal objective of the lower bounding
problem on Z is −8ε3. Convergence at the point y = 0 is, therefore, at most third-order.

It is natural to wonder at this stage whether the reduced-space lower bounding scheme
in [10] has ‘similar convergence properties’ to the full-space lower bounding scheme that was
analyzed in Sect. 4.1. Example 16 presents a case where the reduced-space lower bounding
scheme in [10] only has first-order convergence at a constrained minimizer that is a KKT
point (cf. Example 6, Theorem 2 and Corollary 4). The following example shows that the
reduced-space lower bounding scheme in [10] may have a convergence order as low as one
even for unconstrained problems with smooth objective functions.

Example 13 Consider the following instance of Problem (P):

min
x,y

2x2 + x2y − xy2 + (y − 0.5)2

s.t. x ∈ [−1, 1], y ∈ [0, 1].

The global minimum, (x∗, y∗), of the above ‘unconstrained problem’ is x∗ = 2
√
21
3 −3, y∗ =√

21
3 − 1 with optimal objective value ν∗ = 2(x∗)2 + (x∗)2y∗ − x∗(y∗)2 + (y∗ − 0.5)2.
Consider [y∗ − ε, y∗ + ε] =: Z ∈ IY with ε ∈ (0, 0.25]. The reduced-space lower

bounding scheme in [10] yields

O(Z) = min
x,y,w1,w2

2x2 + w1 + w2 + (y − 0.5)2

s.t. w1 ≥ x2(y∗ − ε),

w1 ≥ y + x2(y∗ + ε) − (y∗ + ε),

w2 ≥ y2 − x(y∗ + ε)2 − (y∗ + ε)2,

w2 ≥ (y∗)2 − 2y∗y − ε2 − x(y∗ − ε)2 + (y∗ − ε)2,

x ∈ [−1, 1], y ∈ [y∗ − ε, y∗ + ε].
Note that the point (x fZ , yfZ , wf

1,Z , wf
2,Z ) = (x∗, y∗, (x∗)2(y∗ − ε),−(y∗)2 − ε2 − x∗(y∗ −

ε)2 + (y∗ − ε)2) is feasible for the lower bounding scheme with objective value 2(x∗)2 +
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wf
1,Z + wf

2,Z + (y∗ − 0.5)2 = ν∗ + 2x∗y∗ε − (x∗)2ε − x∗ε2 − 2y∗ε. Therefore, we have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)

≥ (x∗)2ε + x∗ε2 + 2y∗ε − 2x∗y∗ε
= (0.5(x∗)2 + 0.5x∗ε + y∗ − x∗y∗)w(Z)

= 0.5
(
1 + εx∗)w(Z)

≥ 0.5w(Z),

which establishes that the reduced-space lower bounding scheme in [10] has at most first-
order convergence at (the reduced-space minimizer) y∗.

Remark 13 Example 13 provides an instance of Problem (P) for which the minimum is
unconstrained but the reduced-space lower bounding scheme in [10] is only first-order con-
vergent at the reduced-space minimizer. Therefore, the lower bounding scheme in [10] could
face severe clustering for this example [7,38]. Note that this is in contrast to the full-space
lower bounding schemes in Sect. 4 which can achieve at least second-order convergence at
the above minimizer and thereby mitigate clustering.

The presence of the terms x2y and −xy2 in the objective function in Example 13 plays a
crucial role in limiting the convergence order of the reduced-space lower bounding scheme
in [10] (see Remark 12). Additionally, the analysis in Example 13 implies that the scheme
of relaxations of its objective function has at most first-order Hausdorff convergence on Y .
Theorem 10 in Sect. 5.2 implies that the reduced-space lower bounding scheme in [10] has
second-order convergence at KKT points when all of the functions in Problem (P) are twice
continuously differentiable and separable in x and y.

5.2 Duality-based branch-and-bound

Dür andHorst [9, Section 3.3] outlined a reduced-space branch-and-bound algorithm inwhich
they used Lagrangian duality to obtain lower bounds (also see [3,8]). Dür and Horst [9] prove
that when a constraint qualification holds for the reduced-space convex relaxation-based
lower bounding scheme with each function in Problem (P) replaced by its (convex) envelope
on X × Z (for each Z ∈ IY ), the subdivision process is exhaustive on Y , and the selection
procedure is bound improving, then any accumulation point of the sequence of reduced-space
dual lower bounding solutions solves Problem (P).

The reduced-space Lagrangian dual lower bounding problem is in essence the same as
its full-space counterpart Problem (D), with the major difference being that we only branch
on the Y -space in the reduced-space dual lower bounding scheme to converge. We associate
with the reduced-space dual lower bounding scheme, (L (Z))Z∈IY , at a feasible point in the
reduced-space y, a scheme of dual variables ((μ

y
Z ,λ

y
Z ))Z∈IY corresponding to the solution

of the scheme of dual lower bounding problems (O(Z))Z∈IY with y ∈ Z . Dür and Horst [9,
Section 4] also outlined classes of problems for which the reduced-space dual lower bounding
problem can be solved to optimality. The following result, analogous to Theorem 4, holds.

Theorem 8 Consider Problem (P). Suppose strong duality holds for the reduced-space con-
vex relaxation-based lower bounding scheme for Problem (P) obtained by using the schemes
of (convex) envelopes of f, g, and h. Then, the reduced-space dual lower bounding scheme
has at least as high a convergence order as the reduced-space convex relaxation-based lower
bounding scheme obtained by using schemes of (convex) envelopes.
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Proof The proof is similar to that of Theorem 4 and is therefore omitted. ��

The following result from [9] states that when the constraints in Problem (P) are affine on
X×Y , the lower bounding scheme corresponding to schemes of (convex) envelopes provides
the same scheme of lower bounds as that obtained using the dual lower bounding scheme.

Lemma 14 Consider Problem (P), and suppose the constraints in Problem (P) are affine in x
and y, i.e. g : X×Y � (x, y) �→ Agx+Bgy−cg and h : X×Y � (x, y) �→ Ahx+Bhy−ch.
In addition, suppose Problem (P) is feasible and strong duality holds for Problem (P) for
y restricted to any feasible point in Y . Then the lower bound obtained by solving the dual
problem on Z ∈ IY is the same as the lower bound obtained by solving the relaxation of
the original problem on Z with the objective function f replaced by its convex envelope on
X × Z.

Proof See Proposition 2.1 in [9]. ��

Lemma 13 (in conjunction with Lemma 11) guarantees that the reduced-space dual lower
bounding scheme has at least first-order convergence at infeasible points for the subclass
of Problem (P) for which the algorithm of Epperly and Pistikopoulos is applicable when
the functions wC

i ,∀i ∈ Q, and wD corresponding to each of the constraints are Lipschitz
continuous. The following result shows that first-order convergence at infeasible points is
guaranteed for a more general class of problems in the form of Problem (P) even when
constraint propagation techniques are not used.

Lemma 15 Let X ⊂ R
nx , Y ⊂ R

ny be nonempty compact convex sets, f : X × Y → R be
Lipschitz continuous on X × Y with Lipschitz constant M f . Suppose f is partially convex
with respect to x, i.e. f (·, y) is convex on X for each y ∈ Y . For any Z ∈ IY , let f cv,envX×Z :
X × Z → R denote the convex envelope of f on X × Z. Assume that for each x̄ ∈ X,
there exists a subgradient s(y; x̄) ∈ ∂x f (x, y)|x=x̄ such that each si (y; x̄), i = 1, . . . , nx , is
Lipschitz continuous on Y with Lipschitz constant Ms. Then, the reduced-space scheme of
convex envelopes

(
f cv,envX×Z

)
Z∈IY has pointwise convergence of order at least one on Y .

Proof We wish to prove the existence of a constant τ ≥ 0 such that

max
(x,y)∈X×Z

| f (x, y) − f cv,envX×Z (x, y)| ≤ τw(Z), ∀Z ∈ IY.

Note that the existence of the maximum in the above expression follows from the (Lipschitz)
continuity of f , Lemma 4, and the compactness of X × Y . Consider Z ∈ IY , and let
(x∗

Z , y∗
Z ) ∈ argmax

(x,y)∈X×Z
| f (x, y) − f cv,envX×Z (x, y)|. We have

max
(x,y)∈X×Z

| f (x, y) − f cv,envX×Z (x, y)| = f (x∗
Z , y∗

Z ) − f cv,envX×Z (x∗
Z , y∗

Z )

= max
y∈Z | f (x∗

Z , y) − f cv,envX×Z (x∗
Z , y)|. (10)

Since f (·, y) is convex on X for each y ∈ Y , we have

f (x, y) ≥ f (x∗
Z , y) + s(y; x∗

Z )
T
(x − x∗

Z )

= f (x∗
Z , y) + wZ (x, y)
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≥ f cv,envZ (x∗
Z , y) + wcv

X×Z (x, y), ∀(x, y) ∈ X × Z ,

where s(y; x∗
Z ) ∈ ∂x f (x, y)|x=x∗

Z
is a subgradient of f (·, y) at x∗

Z such that si (y; x∗
Z ),∀i ∈

{1, . . . , nx }, is Lipschitz continuous on Z with Lipschitz constant Ms, f cv,envZ (x∗
Z , ·) denotes

the convex envelope of f (x∗
Z , ·) on Z , wZ (x, y) := s(y; x∗

Z )T(x − x∗
Z ) is a function of the

form (W), andwcv
X×Z is a convex relaxation ofwZ on X×Z of the form (Wcv) with first-order

(pointwise) convergent schemes of estimators of s(y; x∗
Z ) used in its construction.

Since f is Lipschitz continuous on X × Y and f cv,envZ (x∗
Z , ·) is the convex envelope of

f (x∗
Z , ·) on Z , we have from Lemma 7 that

max
y∈Z | f (x∗

Z , y) − f cv,envZ (x∗
Z , y)| ≤ M f w(Z).

Using Lemma 12 with wB
i (x) = (xi − x∗

i,Z ), wC
i (y) = si (y; x∗

Z ), w
B,L
i,X = min

x∈X (xi −
x∗
i,Z ), w

B,U
i,X = max

x∈X (xi − x∗
i,Z ), w

C,cv
i,Z (y) = w

C,L
i,Z = min

y∈Z si (y; x∗
Z ), and w

C,cc
i,Z (y) = w

C,U
i,Z =

max
y∈Z si (y; x∗

Z ), we can show the existence of a constant τ̄ ≥ 0 such that

max
(x,y)∈X×Z

∣∣wZ (x, y) − wcv
X×Z (x, y)

∣∣ ≤ τ̄w(Z).

From the above two inequalities, we have

max
(x,y)∈X×Z

∣∣( f (x∗
Z , y) + wZ (x, y)

)− ( f cv,envZ (x∗
Z , y) + wcv

X×Z (x, y)
)∣∣ ≤ (M f + τ̄

)
w(Z).

Using wZ (x∗
Z , y) = 0, we obtain

max
y∈Z
∣∣ f (x∗

Z , y) − ( f cv,envZ (x∗
Z , y) + wcv

X×Z (x∗
Z , y)

)∣∣ ≤ (M f + τ̄
)
w(Z).

Since the convex envelope of f on X × Z , f cv,envX×Z , is, by definition, tighter than the convex
relaxation f cv,envZ (x∗

Z , ·) + wcv
X×Z at x∗

Z , we have from Eq. (10) that

max
y∈Z | f (x∗

Z , y) − f cv,envX×Z (x∗
Z , y)| ≤ (M f + τ̄

)
w(Z),

which proves the existence of τ . ��
Note that the assumptions of Lemma 15 are readily satisfied if f is a Lipschitz continuous

function of the form (W) that is composed of continuous functionswA, wB
i ,∀i ∈ Q, andwD

and Lipschitz continuous functions wC
i ,∀i ∈ Q. An instance for which the assumptions of

Lemma 15 are not satisfied is f (x, y) = |y||x + y + 1| with X = [−1, 1] and Y = [−1, 1].
The following examples provide instances for which the assumptions of Lemma 15 are
satisfied, but where the functions involved are not in the form (W).

Example 14 Let X = [−1, 1], Y = [−1, 1], and f (x, y) = exp(xy). We have M f =√
2 exp(1), s(y; x) = y exp(xy), and Ms = 2 exp(1) satisfying the assumptions of

Lemma 15.

Example 15 Let X = [−1, 1], Y = [−1, 1], and f (x, y) = −|y|√x + y + 3. We have
M f = 4, s(y; x) = − |y|

2
√
x+y+3

, and Ms = 1 satisfying the assumptions of Lemma 15.

The next result shows that the reduced-space dual lower bounding scheme has arbitrarily
high convergence order at unconstrained points in the reduced-space.
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Proposition 3 Consider Problem (P) with mE = 0. Suppose yS ∈ Y is an unconstrained
point in the reduced-space. Furthermore, suppose the reduced-space dual lower bounding
scheme has convergence of order β > 0 at yS. Then the reduced-space dual lower bounding
scheme has arbitrarily high convergence order at yS.

Proof The proof is relegated to Appendix A.3 since it is similar to the proof of
Proposition 1. ��

The following result establishes first-order convergence of the reduced-space dual lower
bounding scheme even in the absence of constraint propagation.

Theorem 9 Consider Problem (P). Suppose f, g j , j = 1, . . . ,mI , and hk, k = 1, . . . ,mE,
are Lipschitz continuous on X×Y with Lipschitz constants M f , Mg,1, . . . , Mg,mI , Mh,1, . . . ,

Mh,mE , respectively, and assume that the assumptions of Lemma 15 hold for g and h. Assume,
in addition, that Problem (P) is feasible, and that strong duality holds for Problem (P) for y
restricted to any feasible point in Y . Furthermore, suppose the set of optimal dual variables
for Problem (P) restricted to any feasible y ∈ Y is bounded (with the bound independent of
y). Then the reduced-space dual lower bounding scheme is at least first-order convergent on
Y .

Proof Lemma 11, 13, and 15 imply that the dual lower bounding scheme is at least first-order
convergent at any infeasible point y ∈ Y with the prefactor independent of y (note that the
conclusion of Lemma 13 does not depend on the schemes of relaxations of the constraints
being in the form (Wcv)).

Define F(y,μ,λ) := min
x∈X f (x, y)+μTg(x, y)+λTh(x, y). We first show that F(·,μ,λ)

is Lipschitz continuous on Y for any (μ,λ) ∈ R
mI+ × R

mE . Consider (μ,λ) ∈ R
mI+ × R

mE

and y1, y2 ∈ Y . We have

|F(y1, μ, λ) − F(y2, μ, λ)|
=
∣∣∣∣
(
min
x∈X f (x, y1) + μTg(x, y1) + λTh(x, y1)

)
−
(
min
x∈X f (x, y2) + μTg(x, y2) + λTh(x, y2)

)∣∣∣∣
≤ max

x∈X
∣∣( f (x, y1) − f (x, y2)) + μT (g(x, y1) − g(x, y2)) + λT (h(x, y1) − h(x, y2))

∣∣
≤ max

x∈X | f (x, y1) − f (x, y2)| + max
x∈X

∣∣μT(g(x, y1) − g(x, y2))
∣∣+ max

x∈X
∣∣λT(h(x, y1) − h(x, y2))

∣∣

≤
⎛
⎝M f +

mI∑
j=1

|μ j |Mg, j +
mE∑
k=1

|λk |Mh,k

⎞
⎠ ‖y1 − y2‖,

where Step 2 follows from Lemma 3, and Step 4 follows from the Lipschitz continuity of the
functions involved.

Suppose F (Y ) �= ∅ and Z ∈ IY such that Z ∩ F (Y ) �= ∅. Since strong duality holds
for Problem (P) with y restricted to any feasible point in Y , Problem (P) can be equivalently
expressed on Z as

min
(x,y)∈F (Z)

f (x, y) = min
y∈Z sup

(μ,λ)∈RmI+ ×R
mE

F(y,μ,λ).

By strong duality and Z ∩ F (Y ) �= ∅, there exists a minimizer (y∗
Z ,μ∗

Z ,λ∗
Z ) of the above

‘dual form’ of Problem (P) when y is restricted to Z . We have
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∣∣∣∣∣∣ min
(x,y)∈F (Z)

f (x, y) − sup
(μ,λ)∈RmI+ ×R

mE

min
(x,y)∈X×Z

[
f (x, y) + μTg(x, y) + λTh(x, y)

]
∣∣∣∣∣∣

=
∣∣∣∣∣∣F(y∗

Z ,μ∗
Z ,λ∗

Z ) − sup
(μ,λ)∈RmI+ ×R

mE

min
y∈Z F(y,μ,λ)

∣∣∣∣∣∣
≤
∣∣∣∣F(y∗

Z ,μ∗
Z ,λ∗

Z ) − min
y∈Z F(y,μ∗

Z ,λ∗
Z )

∣∣∣∣
= ∣∣F(y∗

Z ,μ∗
Z ,λ∗

Z ) − F(ȳZ ,μ∗
Z ,λ∗

Z )
∣∣

≤
⎛
⎝M f +

mI∑
j=1

|μ∗
j,Z |Mg, j +

mE∑
k=1

|λ∗
k,Z |Mh,k

⎞
⎠ ‖y∗

Z − ȳZ‖

≤
⎛
⎝M f +

mI∑
j=1

M∞Mg, j +
mE∑
k=1

M∞Mh,k

⎞
⎠√

nyw(Z),

where ȳZ ∈ argmin
y∈Z

F(y,μ∗
Z ,λ∗

Z ), M∞ := sup
y∈Y

max
{‖μ∗(y)‖∞, ‖λ∗(y)‖∞

}
is an upper

bound on the norm of pairs of optimal dual variables (μ∗(y),λ∗(y)) ∈ argmin
μ≥0,λ

F(y,μ,λ),

and the penultimate step follows from the Lipschitz continuity of F(·,μ,λ) on Y . ��
The assumption that the set of optimal dual variables for Problem (P) restricted to any

feasible y ∈ Y is bounded can be replaced with the less restrictive assumption that there
exists an optimal dual variable pair (μ∗(y),λ∗(y)) ∈ argmin

μ≥0,λ
F(y,μ,λ) for each y ∈ Y such

that sup
y∈Y

max
{‖μ∗(y)‖∞, ‖λ∗(y)‖∞

} ≤ M∞.

A corollary of Theorems 7 and 9 is that first-order convergence is guaranteed for the convex
relaxation-based reduced-space lower bounding scheme in [10] when first-order pointwise
convergent schemes of relaxations on Y are used in its construction. Instead of proving
first-order convergence of the lower bounding scheme in [10] at feasible points under the
assumption that schemes of bounded optimal dual variables exist, we show that the reduced-
space lower bounding scheme in [10] enjoys first-order convergence at any feasible point
in the reduced-space under the (less restrictive) assumption that strong duality holds for
Problem (P) with y fixed to the feasible point.

Corollary 5 Consider Problem (P). Suppose the functions f and g j ,∀ j ∈ {1, . . . ,mI }, are
Lipschitz continuous on X ×Y with Lipschitz constants M f , Mg,1, . . . , Mg,mI , respectively,
and are each of the form (W). Furthermore, suppose functions hk, k = 1, . . . ,mE, are Lips-
chitz continuous on X × Y with Lipschitz constants Mh,1, . . . , Mh,mE , respectively, and are
each of the form (Weq). Suppose yf ∈ Y is a feasible point in the reduced-space and strong
duality holds for Problem (P)when y is fixed to yf. Let ( f cvX (Z)×Z )Z∈IY , (gcvj,X (Z)×Z )Z∈IY , j =
1, . . . ,mI , denote continuous schemes of convex relaxations of f, g1, . . . , gmI , respectively,
in Y with pointwise convergence orders γ cv

f ≥ 1, γ cv
g,1 ≥ 1, . . . , γ cv

g,mI
≥ 1 and correspond-

ing constants τ cvf , τ cvg,1, . . . , τ
cv
g,mI

. Let (hcvk,X (Z)×Z , hcck,X (Z)×Z )Z∈IY , k = 1, . . . ,mE, denote
continuous schemes of relaxations of h1, . . . , hmE , respectively, in Y with pointwise conver-
gence orders γh,1 ≥ 1, . . . , γh,mE ≥ 1 and corresponding constants τh,1, . . . , τh,mE . Then,
the scheme of lower bounding problems (L (Z))Z∈IY proposed in [10] is at least first-order
convergent at yf.
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Proof Let
(
μyf ,λyf

)
∈ argmax

μ≥0,λ
F(yf,μ,λ) be an optimal pair of dual variables for y fixed

to yf in Problem (P). Suppose Z ∈ IY with yf ∈ Z . Similar to the proof of Theorem 9, we
have ∣∣∣∣∣∣ min

(x,y)∈F (Z)
f (x, y) − sup

(μ,λ)∈RmI+ ×R
mE

min
(x,y)∈X×Z

[
f (x, y) + μTg(x, y) + λTh(x, y)

]
∣∣∣∣∣∣

≤
∣∣∣∣∣∣F
(
yf,μyf ,λyf

)
− sup

(μ,λ)∈RmI+ ×R
mE

min
y∈Z F(y,μ,λ)

∣∣∣∣∣∣
≤
∣∣∣∣F
(
yf,μyf ,λyf

)
− min

y∈Z F
(
y,μyf ,λyf

)∣∣∣∣
≤ τ fw(Z),

for some constant τ f ≥ 0. The result then holds as a consequence of Theorem 7 by using

μ
yf

Z = μyf ,λ
yf

Z = λyf , μ̄ =
∥∥∥μyf

∥∥∥∞, and λ̄ =
∥∥∥λyf

∥∥∥∞ in Theorem 7. ��

The following example shows that the convergence order of the reduced-space dual lower
bounding scheme may be as low as one at constrained minima.

Example 16 Consider the following instance of Problem (P):

min
x,y

− xy

s.t. x + y ≤ 1,

x ∈ [−1, 1], y ∈ [0, 1].
The optimal solution is (x∗, y∗) = (0.5, 0.5) with optimal objective value −0.25. When the
inequality constraint is dualized, the following dual function is obtained:

q(μ) = min
x,y

− xy + μ (x + y − 1)

s.t. x ∈ [−1, 1], y ∈ [0, 1].
Consider [yL, yU] = [0.5 − ε, 0.5 + ε] =: Z ∈ IY with ε ∈ (0, 0.5]. In order to derive the
dual function

q(μ) = min
x∈[−1,1]
y∈[yL,yU]

− xy + μ(x + y − 1)

as an explicit function of μ, we partition the domain of μ to obtain

q(μ) =

⎧⎪⎨
⎪⎩

(μ − 1)yU, if μ ≤ yL

min{(μ − 1)yU, (μ + 1)yL − 2μ}, if yL ≤ μ ≤ yU

(μ + 1)yL − 2μ, if μ ≥ yU

when the bounds on x are taken to be [−1, 1] irrespective of the bounds on y. The dual lower
bound can therefore be derived as:

sup
μ≥0

q(μ) = (yL − 1)yU

1 + 0.5(yU − yL)
.
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Therefore, for [yL, yU] = [0.5 − ε, 0.5 + ε], the dual lower bound can be derived as

sup
μ≥0

q(μ) = (−0.5 − ε)(0.5 + ε)

1 + ε
= − (0.5 + ε)2

1 + ε
.

Consequently,

min
(x,y)∈F (Z)

− xy − sup
μ≥0

q(μ) = −0.25 + (0.5 + ε)2

1 + ε
= 0.75ε + ε2

1 + ε
≥ 0.75ε,

which implies that the dual lower bounding scheme is at most first-order convergent at y∗.

Remark 14 Example 16 provides an instance of Problem (P) for which both the reduced-
space dual lower bounding scheme [9] and the reduced-space lower bounding scheme in [10]
(this follows from Lemma 14) are only first-order convergent at the minimizer. Furthermore,
for each y ∈ [0, 1], the reduced-space objective function v : [0, 1] → R can be derived as

v(y) = min
x

− xy

s.t. x + y ≤ 1,

x ∈ [−1, 1],
which reduces to v(y) = y2− y. It can be seen that y∗ = 0.5 is an unconstrainedminimum of
the reduced-space objective v(y), which implies that at least second-order convergence of the
reduced-space lower bounding scheme is typically required at y∗ tomitigate clustering [7,38].

Therefore, neither reduced-space lower bounding scheme can be expected to avoid cluster-
ing for this example. Note that this is in contrast to the full-space lower bounding schemes in
Sect. 4 which can achieve at least second-order convergence at (x∗, y∗) and thereby mitigate
clustering [15].

Note, however, that the use of constraint propagation techniques by reduced-space lower
bounding schemes can potentially increase their convergence order as demonstrated byExam-
ples 17 and 18. This demonstrates the importance of constraint propagation techniques in
reduced-space lower bounding schemes, which has not been emphasized in [9,10].

Example 17 Consider the instance of Problem (P) in Example 16 with Z = [yL, yU] ⊂
[0, 1], yL ≤ 0.5, yU ≥ 0.5. Suppose we use constraint propagation to derive X (Z) =
[−1, 1 − yL]. The dual function can be derived as

q(μ) =

⎧⎪⎨
⎪⎩

μ(yU − yL) + yU(yL − 1), if μ ≤ yL

min{μ(yU − yL) + yU(yL − 1), (μ + 1)yL − 2μ}, if yL ≤ μ ≤ yU

(μ + 1)yL − 2μ, if μ ≥ yU
,

which yields the dual lower bound

sup
μ≥0

q(μ) = (yL + yU − yLyU)(yL − 2)

2 + yU − 2yL
+ yL.

Consider yL = 0.5 − ε, yU = 0.5 + ε for some ε ∈ (0, 0.5). The dual lower bound reduces
to

sup
μ≥0

q(μ) = −ε3 − 4.5ε2 − 0.75ε − 0.375

1.5 + 3ε
.
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Consequently,

min
(x,y)∈F (Z)

− xy − sup
μ≥0

q(μ) = −0.25 + ε3 + 4.5ε2 + 0.75ε + 0.375

1.5 + 3ε

= −0.25 + 1

1.5

(
ε3 + 4.5ε2 + 0.75ε + 0.375

)
(1 + 2ε)−1

= −0.25 + 1

1.5

(
ε3 + 4.5ε2 + 0.75ε + 0.375

)
× (1 − 2ε + 4ε2 + O(ε3)

)
= 3ε2 + O(ε3)

≤ τε2,

for some constant τ > 0 (where we may assume that the above inequality holds for ε = 0.5
as well).

Consider any nondegenerate interval Z = [yL, yU] ⊂ [0, 1] with 0.5 ∈ Z and construct
Z̄ ⊃ Z such that Z̄ = [y∗ − ε, y∗ + ε] with ε = max{yU − y∗, y∗ − yL}. We have

min
(x,y)∈F (Z)

− xy − sup
μ≥0

min
(x,y)∈X (Z)×Z

[−xy + μg(x, y)]

≤ min
(x,y)∈F (Z̄)

− xy − sup
μ≥0

min
(x,y)∈X (Z̄)×Z̄

[−xy + μg(x, y)]

≤ τε2

≤ τw(Z)2,

which implies that the reduced-space dual lower bounding scheme with constraint propaga-
tion is second-order convergent at y∗.

Figure 1 illustrates the performance of the lower bounding schemes considered in this
work in a bare-bones branch-and-bound framework for Examples 16 and 17. The branch-
and-bound framework was implemented in MATLAB®, and the (convex) lower bounding
problems were solved using the CVX [12] package. The lowest lower bound node selection
rule and the interval bisection branching rule (which bisects the domain of the variable
whose interval has the largest width) were used by the branch-and-bound algorithm. Since
Example 16 is not particularly challenging, it is assumed that a local solver finds its global
solution at the root node of the branch-and-bound tree (i.e., the upper bound is set to the
optimal objective value at the root node). In addition, the bounds on x and y were modified to[
−1, 1 −

√
3

100

]
and

[√
2

100 , 1
]
, respectively, to prevent the full-space lower bounding schemes

from branching at the optimal solution and (fortuitously) converging early (this modification
enables a truer characterization of the convergence rates of the lower bounding schemes).

Figure 1a plots the number of iterations of the branch-and-bound algorithm versus the
(absolute) termination tolerance for the full-space lower bounding schemes, the reduced-
space lower bounding schemes without constraint propagation (see Example 16), and the
reduced-space lower bounding schemes with constraint propagation (see Example 17). Note
that both full-space (reduced-space) lower bounding schemes considered in this work result
in the same lower bound for this problem (see Lemma 14). It can be seen that the full-space
lower bounding schemes and the reduced-space lower bounding schemes with constraint
propagation perform significantly better than the reduced-space lower bounding schemes
without constraint propagation for small tolerances, and that they exhibit a much more favor-
able scaling with a decrease in the termination tolerance as well. Furthermore, the advantage
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Fig. 1 (a) Comparison of the number of branch-and-bound iterations between the different lower bounding
schemes considered in this work for different absolute termination tolerances for Example 16. The solid line
indicates the number of iterations of the full-space lower bounding schemes, the dashed line indicates the
number of iterations of the reduced-space lower bounding schemes without constraint propagation, and the
dash-dotted line indicates the number of iterations of the reduced-space lower bounding schemes with con-
straint propagation. (b) Comparison of the number of branch-and-bound iterations of the reduced-space lower
bounding schemes without constraint propagation with the predictions from the cluster problem model for
different absolute termination tolerances for Example 16. The dashed line indicates the number of iterations of
the reduced-space lower bounding schemes without constraint propagation, and the dash-dotted line indicates
the predicted number of iterations from the cluster problem model

of using constraint propagation techniques in the reduced-space lower bounding schemes is
evident, and its use puts the reduced-space lower bounding schemes at an advantage com-
pared to the full-space lower bounding schemes. Figure 1b illustrates that the dependence of
the number of iterations on the termination tolerance for the reduced-space lower bounding
schemes without constraint propagation is in good agreement with their associated cluster
problem models (see [15, Theorem 3] for the details of the cluster problem model). Note
that the prediction of the number of iterations from the cluster problem model in Fig. 1b is
obtained by fitting the prefactor in the cluster model (i.e., intercept of the line in the plot;
the slope of the line is determined by the cluster model using the estimate of the conver-
gence order of the lower bounding scheme obtained from this work) against the number of
iterations obtained from the computational experiments. It is worth mentioning at this stage
that only basic versions of the lower bounding schemes considered in this work have been
used to generate Fig. 1; the performance of the lower bounding schemes may be significantly
different if they are implemented within a state-of-the-art branch-and-bound framework that
solves additional subproblems to speed up their convergence.

The following example illustrates another instance of Problem (P) for which constraint
propagation plays a crucial rule in boosting the convergence order of the convex relaxation-
based reduced-space lower bounding scheme in [10].

Example 18 Consider the following instance of Problem (P):

min
x,y

exp(x) − 4x + y

s.t. x2 + x exp(3 − y) ≤ 10,

x ∈ [0.5, 2], y ∈ [−1, 1].
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The optimal solution of the above problem, which is a constrained minimum, is (x∗, y∗) ≈
(1.029, 0.838)

(
the ‘exact’ optimal solution can be determined as follows: x∗ is the (unique

real) root of the function (4 − exp(x))(10x − x3) − x2 − 10 in [0.5, 2], and y∗ := 3 −
ln

(
10−(x∗)2

x∗

))
with optimal objective value approximately equal to −0.480. The reader

can verify that (x∗, y∗, μ∗) is a KKT point for Problem (P), where μ∗ := 1
x∗ exp(3−y∗) . This

implies, in particular, that the full-space lower bounding schemes in Sect. 4 can be designed
to be at least second-order convergent at (x∗, y∗) (see Theorem 5 and Corollary 4). The
reader can also verify that second-order convergence of the lower bounding scheme may be
sufficient to mitigate the cluster problem around (x∗, y∗) [15].

Since all of the functions in the above instance of Problem (P) are in the form (W), both
the reduced-space lower bounding schemes considered in this section can be employed to
solve it. The ensuing arguments show that the convex relaxation-based reduced-space lower
bounding scheme in [10] is only first-order convergent at y∗ when constraint propagation
techniques are not used.

Consider [yL, yU] := [y∗ − ε, y∗ + ε] =: Z ∈ IY with 0 < ε ≤ 0.1. The reduced-space
lower bounding scheme in [10] yields

O(Z) = min
x,y

exp(x) − 4x + y

s.t. x2 + 2 exp(3 − y) + x exp(3 − yL) − 2 exp(3 − yL) ≤ 10,

x2 + 0.5 exp(3 − y) + x exp(3 − yU) − 0.5 exp(3 − yU) ≤ 10,

x ∈ [0.5, 2], y ∈ [yL, yU].
Note that the point

(x fZ , yfZ ) :=
⎛
⎝
√(

exp(3 − yU)
)2 + 40 + 2

(
exp(3 − yU) − exp(3 − y∗)

)− exp(3 − yU)

2
, y∗
⎞
⎠

is feasible for the above lower bounding scheme with objective value exp(x fZ ) − 4x fZ + yfZ .
Furthermore,

x fZ − x∗ =
(√(exp(3 − yU)

)2 + 40 + 2
(
exp(3 − yU) − exp(3 − y∗)

)− exp(3 − yU)

2

−
√

(exp(3 − y∗))2 + 40 − exp(3 − y∗)
2

)

≥ 0.2ε + o (ε) ,

where the details pertaining to the derivation of the above inequality are presented in
Appendix A.4. Therefore, we have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)

≥ (
exp(x∗) − 4x∗ + y∗)− (exp(x fZ ) − 4x fZ + yfZ

)
= (

exp(x∗) − exp(x fZ )
)+ 4

(
x fZ − x∗)

= (
4 − exp(x∗)

) (
x fZ − x∗)+ o

(∣∣x fZ − x∗∣∣)
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≥ (
x fZ − x∗)+ o

(∣∣x fZ − x∗∣∣)
≥ 0.2ε + o (ε)

≥ 0.05w(Z)

for ε � 1, which establishes that the reduced-space lower bounding scheme in [10] has at
most first-order convergence at y∗ (note that first-order convergence of the scheme follows
from Corollary 5). This is rather unfortunate because y∗ can be seen to be an unconstrained
minimizer of the reduced-space objective function v : [−1, 1] → R, which can be derived
(around y = y∗) to be

v(y) = exp
(
x∗(y)

)− 4x∗(y) + y, ∀y ∈ [0.5, 1],
where x∗ : [0.5, 1] � y �−→ [0.5, 2] is now given by

x∗(y) :=
√

(exp(3 − y))2 + 40 − exp(3 − y)

2
,

which implies that at least second-order convergence of the reduced-space lower bounding
scheme at y∗ is typically required to mitigate clustering [7,38].

We next show that when constraint propagation is used to infer (exact) bounds for x on
Z , second-order convergence of the reduced-space lower bounding scheme in [10] can be
achieved. Note that for [yL, yU] := [y∗ − ε, y∗ + ε] =: Z ∈ IY with 0 < ε ≤ 0.1, the best
possible (interval) bounds that can be obtained for x are x ∈ X (Z) := [xLZ , xUZ ] with

xLZ = 0.5, xUZ =
√(

exp(3 − yU)
)2 + 40 − exp(3 − yU)

2
.

The reduced-space lower bounding scheme in [10] with constraint propagation yields

O(Z) =min
x,y

exp(x) − 4x + y

s.t. x2 + xUZ exp(3 − y) + x exp(3 − yL) − xUZ exp(3 − yL) ≤ 10,

x2 + 0.5 exp(3 − y) + x exp(3 − yU) − 0.5 exp(3 − yU) ≤ 10,

x ∈ [0.5, xUZ ], y ∈ [yL, yU].
By noticing that the first constraint in the above relaxation of Problem (P) is always active at
the solution of the relaxed problem, we can reformulate the reduced-space lower bounding
problem as

O(Z) = min
y∈[yL,yU]

exp (x̄Z (y)) − 4 (x̄Z (y)) + y,

where x̄Z : Z � y �−→ [0.5, xUZ ] is given by

x̄Z (y) :=
√(

exp(3 − yL)
)2 + 40 + 4xUZ

(
exp(3 − yL) − exp(3 − y)

)− exp(3 − yL)

2
.

We have (see Appendix A.4 for details)

x̄Z (y) − x∗(y)

=
(
exp(3 − yL) + exp(3 − y) + 4xUZ

) (
exp(3 − yL) − exp(3 − y)

)

2

(√(
exp(3 − yL)

)2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)+
√

(exp(3 − y))2 + 40

)
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−
(
exp(3 − yL) − exp(3 − y)

)
2

=
α
(
exp(3 − yL) − exp(3 − y)

)

2

(√(
exp(3 − yL)

)2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)+
√

(exp(3 − y))2 + 40

) ,

with 0 ≤ α ≤ τ̂ ε + O(ε2) for some τ̂ ≥ 0. Consequently, we have ∀y ∈ Z that

x̄Z (y) − x∗(y)

≤
(
τ̂ ε + O(ε2)

) (
exp(3 − yL) − exp(3 − y)

)

2

(√(
exp(3 − yL)

)2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)+
√

(exp(3 − y))2 + 40

)

≤ τ̄ ε2 + O(ε3)

for some τ̄ ≥ 0, since exp(3 − yL) − exp(3 − y) is O(ε). Note that x̄Z (y) ≥ x∗(y),∀y ∈
Z ,∀Z . Therefore, on intervals [y∗ − ε, y∗ + ε] =: Z ∈ IY with 0 < ε ≤ 0.1, we have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)

= min
y∈Z f (x∗(y), y) − min

y∈Z f (x̄Z (y), y)

≤ max
y∈Z
∣∣ f (x∗(y), y) − f (x̄Z (y), y)

∣∣
= max

y∈Z
∣∣exp(x∗(y)) − exp(x̄Z (y)) + 4x̄Z (y) − 4x∗(y)

∣∣
= max

y∈Z
∣∣(4 − exp(x∗(y)))

(
x̄Z (y) − x∗(y)

)+ o
(
x̄Z (y) − x∗(y)

)∣∣
≤ max

y∈Z
∣∣2 (x̄Z (y) − x∗(y)

)+ o
(
x̄Z (y) − x∗(y)

)∣∣
≤ 2τ̄ ε2 + o

(
ε2
)

≤ τ̄w(Z)2

for ε � 1, which establishes second-order convergence of the scheme at y∗ when restricted
to symmetric intervals around y∗.

Consider any nondegenerate interval Z = [yL, yU] ∈ IY with y∗ ∈ Z and w(Z) ≤ 0.1,
and construct Z̄ ⊃ Z such that Z̄ = [y∗ − ε, y∗ + ε] with ε = max{yU − y∗, y∗ − yL}. We
have

min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)

≤ min
(x,y)∈F (Z̄)

f (x, y) − min
(x,y)∈F cv(Z̄)

f cvX (Z)×Z (x, y)

≤ τ̄w(Z̄)2

≤ 4τ̄w(Z)2,

which implies that the convex relaxation-based reduced-space dual lower bounding scheme
with constraint propagation is second-order convergent at y∗.

Finally, we show that the reduced-space dual lower bounding scheme in [9] has at least
second-order convergence at y∗ even when constraint propagation is not used to infer bounds
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on x . Consider [yL, yU] =: Z ∈ IY with w(Z) ≤ 0.1. The feasible region of the original
problem on Z is given by

F (Z) = {(x, y) ∈ [0.5, 2] × [yL, yU] : x ≤ x∗(y)
}
.

The convex hull of the feasible region on Z is given by

conv(F (Z)) = {(x, y) ∈ [0.5, 2] × [yL, yU] : x ≤ x∗,cc
Z (y)

}
,

where x∗,cc
Z denotes the concave envelope of x∗ on Z . It is not hard to see that

dH (F (Z), conv(F (Z))) ≤ τ̃w(Z)2 for some τ̃ ≥ 0 (this partly follows from the fact that
x∗ is twice continuously differentiable on [y∗ − 0.1, y∗ + 0.1] and the fact that (x∗,cc

Z

)
Z∈IY

converges pointwise to x∗ with order at least two on [y∗−0.1, y∗+0.1]). Since the dual lower
bounding scheme produces a lower bound that is at least as tight as any convex relaxation-
based scheme, we have

min
(x,y)∈F (Z)

f (x, y) − sup
μ≥0

min
(x,y)∈X (Z)×Z

[ f (x, y) + μg(x, y)]

≤ min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈conv(F (Z))

f (x, y)

= f (x∗, y∗) − f (x̃Z , ỹZ )

≤ f (x̂Z , ŷZ ) − f (x̃Z , ỹZ )

≤ M f
∥∥(x̂Z , ŷZ ) − (x̃Z , ỹZ )

∥∥
≤ M f τ̂w(Z)2,

where (x̃Z , ỹZ ) ∈ argmin
(x,y)∈conv(F (Z))

f (x, y), (x̂Z , ŷZ ) ∈ F (Z) is chosen such that ‖(x̂Z , ŷZ )−
(x̃Z , ỹZ )‖ ≤ τ̃w(Z)2, and M f denotes the Lipschitz constant of f on [0.5, 2] × [−1, 1].
Since the Lagrangian dual-based reduced-space lower bounding scheme is at least first-order
convergent at y∗ from Theorem 9, it is at least second-order convergent at y∗ by analogy to
Lemma 5.

Figure 2 illustrates the performance of the convex relaxation-based full-space and reduced-
space lower bounding schemes in the bare-bones branch-and-bound implementation for
Example 18 (note that we do not consider the Lagrangian dual-based full-space and reduced-
space lower bounding schemes for the numerical experiments for this example because we do
not have closed-form expressions for the lower bounds obtained using those schemes). Once
again, the convex lower bounding problemswere solved using the CVX [12] package, and the
lowest lower bound node selection rule and the interval bisection branching rule were used
by the branch-and-bound algorithm. Since Example 18 is not particularly challenging, we
assume that a local solver finds its global solution at the root node of the branch-and-bound
tree (i.e., the upper bound is set to the optimal objective value of the problem at the root node).

Figure 2a plots the number of iterations of the branch-and-bound algorithm versus the
(absolute) termination tolerance for the full-space convex relaxation-based lower bounding
scheme, the reduced-space convex relaxation-based lower bounding scheme without con-
straint propagation, and the reduced-space convex relaxation-based lower bounding scheme
with constraint propagation. It can be seen that the full-space lower bounding scheme and
the reduced-space lower bounding scheme with constraint propagation perform significantly
better (for small tolerances) and exhibit a much more favorable scaling with a decrease in the
termination tolerance compared to the reduced-space lower bounding scheme without con-
straint propagation. Furthermore, there is a clear advantage in using constraint propagation
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Fig. 2 (a) Comparison of the number of branch-and-bound iterations between the full-space and reduced-
space convex relaxation-based lower bounding schemes considered in this work for different absolute
termination tolerances for Example 18. The solid line indicates the number of iterations of the convex
relaxation-based full-space lower bounding scheme, the dashed line indicates the number of iterations of
the convex relaxation-based reduced-space lower bounding scheme without constraint propagation, and the
dash-dotted line indicates the number of iterations of the convex relaxation-based reduced-space lower bound-
ing scheme with constraint propagation. (b) Comparison of the number of branch-and-bound iterations of the
convex relaxation-based reduced-space lower bounding scheme without constraint propagation with the pre-
dictions from the cluster problem model for different absolute termination tolerances for Example 18. The
dashed line indicates the number of iterations of the convex relaxation-based reduced-space lower bounding
scheme without constraint propagation, and the dash-dotted line indicates the predicted number of iterations
from the cluster problem model

techniques in the reduced-space lower bounding scheme, and its use makes the performance
of the reduced-space lower bounding scheme superior to that of the full-space lower bounding
scheme for this example. Figure 2b shows that the number of iterations versus the termina-
tion tolerance for the reduced-space lower bounding scheme without constraint propagation
closely follows the prediction from its associated cluster problem model (see [15] for the
details of the cluster problem model). Note, once again, that the prediction of the number of
iterations from the cluster problem model in Fig. 2b is obtained by fitting the prefactor in the
cluster model against the number of iterations obtained from the computational experiments.
We wish to reiterate that only basic versions of the convex relaxation-based lower bounding
schemes have been used to generate Fig. 2; the performance of the lower bounding schemes
may be significantly different if they are implemented within a state-of-the-art branch-and-
bound framework that solves additional subproblems to speed up their convergence.

The following result shows that the reduced-space dual lower bounding scheme is second-
order convergent at KKT points even in the absence of constraint propagation when all of
the functions in Problem (P) are twice continuously differentiable and separable in x and y.

Theorem 10 Consider Problem (P), and suppose f, g j , j = 1, . . . ,mI , and hk, k =
1, . . . ,mE, are separable in x and y. Suppose int(X × Y ) is nonempty, and f, g, and h
are twice continuously differentiable on int(X × Y ). Furthermore, suppose there exists
(x∗, y∗) ∈ int(X × Y ),μ∗ ∈ R

mI+ ,λ∗ ∈ R
mE such that (x∗, y∗,μ∗,λ∗) is a KKT point

for Problem (P). The reduced-space dual lower bounding scheme is at least second-order
convergent at y∗.

Proof Let L(x, y,μ,λ) := f (x, y) + μTg(x, y) + λTh(x, y) denote the Lagrangian of
Problem (P). Since we are concerned about the convergence order at the reduced-space
feasible point y∗, it suffices to show the existence of τ ≥ 0 such that for every Z ∈ IY with
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y∗ ∈ Z ,

min
(x,y)∈F (Z)

f (x, y) − sup
μ≥0,λ

min
(x,y)∈X×Z

L(x, y,μ,λ) ≤ τw(Z)2.

We have

sup
μ≥0,λ

min
(x,y)∈X×Z

L(x, y,μ,λ) ≥ min
(x,y)∈X×Z

L(x, y,μ∗,λ∗)

≥ min
(x,y)∈X×Z

[
L(x∗, y,μ∗,λ∗) + ∇xL(x∗, y,μ∗,λ∗)T(x − x∗)

]

= min
(x,y)∈X×Z

[
L(x∗, y∗,μ∗,λ∗) + ∇xL(x∗, y∗,μ∗,λ∗)T(x − x∗)

+
(
∇y

(
∇xL(x∗, y∗,μ∗,λ∗)T(x−x∗)

))T
(y − y∗)

+∇yL(x∗, y∗,μ∗,λ∗)T(y − y∗) − O(w(Z)2)
]

= min
(x,y)∈X×Z

[
f (x∗, y∗) − O(w(Z)2)

]

≥ f (x∗, y∗) − O(w(Z)2).

Note that we have used the fact that L is partly convex with respect to x in Step 2, that
L(x∗, y∗,μ∗,λ∗) = f (x∗, y∗),∇xL(x∗, y∗,μ∗,λ∗) = 0,∇yL(x∗, y∗,μ∗,λ∗) = 0 in
Step 4 since it is assumed that (x∗, y∗,μ∗,λ∗) is a KKT point for Problem (P), and that

∇y

(
∇xL(x∗, y∗,μ∗,λ∗)T(x − x∗)

)
= 0 in Step 4 by virtue of the assumption that the

Lagrangian is separable in x and y. Therefore,

min
(x,y)∈F (Z)

f (x, y) − sup
μ≥0,λ

min
(x,y)∈X×Z

L(x, y,μ,λ) ≤ O(w(Z)2),

which establishes the existence of τ for all Z ∈ IY with y∗ ∈ Z by analogy to Lemma 5. ��
Note that the assumption of separability in Theorem 10 can be replaced with the weaker

assumption that ∇2
xyL(x∗, y∗,μ∗,λ∗) is the zero matrix.

Remark 15 Similar to Corollary 5, it can be shown that the reduced-space lower bounding
scheme in [10] has second-order convergence at KKT points even in the absence of con-
straint propagation when all of the functions in Problem (P) are separable in x and y and
second-order pointwise convergent schemes of relaxations are used. Furthermore, under the
above assumption of separability, the reduced-space lower bounding schemes in [10] and [9]
can be shown to possess second-order convergence at infeasible points and unconstrained
points in the reduced-space under suitable assumptions on the lower bounding schemes (see
Remark 12). Consequently, the convergence properties of the reduced-space lower bounding
schemes considered in this section are similar to their counterpart full-space lower bounding
schemes in Sect. 4 when all of the functions in Problem (P) are twice continuously differen-
tiable and separable in x and y. Example 11 provides an instance wherein the convergence
order is exactly two at y∗ under the assumptions of Theorem 10.

6 Conclusion

A definition of convergence order for constrained problems has been introduced. The
definition reduces to previously developed notions of convergence order for the case of uncon-
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strained problems.An analysis of the convergence order of some full-space and reduced-space
branch-and-bound algorithms has been performed.

It has been shown that convex relaxation-based full-space lower bounding schemes enjoy
first-order convergence undermild assumptions and second-order convergence at KKTpoints
when second-order pointwise convergent schemes of relaxations of the objective and the
constraints are used. Furthermore, the importance of a sufficiently high convergence order
at nearly-feasible points has been demonstrated. Lagrangian dual-based full-space lower
bounding schemes have been shown to have at least as large a convergence order as convex
relaxation-based lower bounding schemes. In addition, it has been shown that Lagrangian
dual-based lower bounding schemes where the dual function is not exactly optimized still
enjoy first-order convergence.

The convergence order of the reduced-space convex relaxation-based lower bounding
scheme of Epperly and Pistikopoulos has been investigated, and it has been shown that the
scheme enjoys first-order convergence under certain assumptions. However, their scheme
can have as low as first-order convergence even at unconstrained points which can lead to
clustering. It has also been shown that the reduced-space dual lower bounding scheme enjoys
first-order convergence and that its convergence order may be as low as one for constrained
problems. In that regard, the importance of constraint propagation in boosting the convergence
order of reduced-space lower bounding schemes has been demonstrated. Furthermore, it has
been shown that when all of the functions in Problem (P) are twice continuously differentiable
and separable in x and y, the above reduced-space lower bounding schemes can achieve
second-order convergence at KKT points, at unconstrained points in the reduced-space, and
at infeasible points.

Futurework involves determiningwhether full-space lower bounding schemes can achieve
second-order convergence on a neighborhood of constrained minima that are KKT points
(such a result may be required to mitigate the cluster problem at such constrained minima -
see [15, Proposition 2], for instance), analyzing the convergence orders of some other widely-
applicable reduced-space lower bounding schemes in the literature (see, for example, [32]),
and determining sufficient conditions on the constraint propagation scheme to ensure second-
order convergence of reduced-space lower bounding schemes at constrained minima that
satisfy certain regularity conditions.

Acknowledgements The authors would like to thank Garrett Dowdy and Peter Stechlinski for helpful dis-
cussions.

A Proofs

A.1 Proof of Proposition 1

Proposition 1 Consider Problem (P) with mE = 0. Suppose f and g j ,∀ j ∈ {1, . . . ,mI },
are Lipschitz continuous on X × Y . Furthermore, suppose (xS, yS) ∈ X × Y such that
g(xS, yS) < 0 (i.e. (xS, yS) is a Slater point). The dual lower bounding scheme has arbitrarily
high convergence order at (xS, yS).

Proof The arguments below are closely related to the proof of Corollary 2.
Since we wish to prove that the dual lower bounding scheme has arbitrarily high conver-

gence order at the feasible point (xS, yS), it suffices to show that for each β > 0, there exists
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τ ≥ 0, δ > 0 such that for every Z ∈ I(X × Y ) with (xS, yS) ∈ Z and w(Z) ≤ δ,

min
(x,y)∈F (Z)

f (x, y) − sup
μ≥0

min
(x,y)∈Z

[
f (x, y) + μTg(x, y)

] ≤ τw(Z)β,

and the desired result follows by analogy to Lemma 5 by observing that the dual lower
bounding scheme is at least first-order convergent at (xS, yS).

Let g j (xS, yS) = −ε j < 0,∀ j ∈ {1, . . . ,mI }. Since g j is continuous for each j ∈
{1, . . . ,mI }, there exists δ j > 0,∀ j ∈ {1, . . . ,mI }, such that ‖(x, y) − (xS, yS)‖∞ < δ j
implies |g j (x, y) − g j (xS, yS)| <

ε j
2 (see Lemma 2).

Define δ := min
j∈{1,...,mI }

δ j , and note that δ > 0. Consider Z ∈ I(X×Y ) such that (xS, yS) ∈
Z andw(Z) ≤ δ. For each (x, y) ∈ Z , j ∈ {1, . . . ,mI }wehave |g j (x, y)−g j (xS, yS)| <

ε j
2 .

Therefore, for each j ∈ {1, . . . ,mI }, g j (x, y) < − ε j
2 < 0, ∀(x, y) ∈ Z . Consequently,

sup
μ≥0

min
(x,y)∈Z

[
f (x, y) + μTg(x, y)

] ≥ min
(x,y)∈Z f (x, y)

= min
(x,y)∈F (Z)

f (x, y)

since Problem (P) is effectively unconstrained over the small intervals Z around (xS, yS),
which implies τ = 0 and δ = min

j∈{1,...,mI }
δ j satisfy the requirements. ��

A.2 Proof of Proposition 2

Proposition 2 Consider Problem (P) with mE = 0. Suppose the functions f and g j , j =
1, . . . ,mI , are each of the form (W). Let ( f cvX (Z)×Z )Z∈IY denote a continuous scheme of
convex relaxations of f in Y with convergence order βcv

f > 0 and corresponding constant
τ cvf , (gcvj,X (Z)×Z )Z∈IY , j = 1, . . . ,mI , denote continuous schemes of convex relaxations of
g1, . . . , gmI , respectively, in Y with pointwise convergence orders γ cv

g,1 > 0, . . . , γ cv
g,mI

> 0
and corresponding constants τ cvg,1, . . . , τ

cv
g,mI

.

Suppose yS ∈ Y is an unconstrained point in the reduced-space, and the scheme of lower
bounding problems (L (Z))Z∈IY with

(O(Z))Z∈IY :=
(

min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)
)
Z∈IY

,

(IC (Z))Z∈IY :=
(
gcvX (Z)×Z (X (Z) × Z)

)
Z∈IY

has convergence of order β ∈ (0, βcv
f ] at yS. Then the scheme of lower bounding problems

(L (Z))Z∈IY is at least βcv
f -order convergent at y

S.

Proof The proof is similar to the proof of Corollary 2.
Since yS is an unconstrained point in the reduced-space and g j is continuous for each

j ∈ {1, . . . ,mI } by virtue of Assumption 1, ∃δ > 0 such that ∀z ∈ Y with ‖z − yS‖∞ ≤ δ

(see Lemma 2), we have g(x, z) < 0,∀x ∈ X .
Consider Z ∈ IY with yS ∈ Z and w(Z) ≤ δ. We have g(X (Z) × Z) ⊂ R

mI− and
gcvX (Z)×Z (X (Z) × Z) ⊂ R

mI− . Consequently,
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min
(x,y)∈F (Z)

f (x, y) − min
(x,y)∈F cv(Z)

f cvX (Z)×Z (x, y)

= min
(x,y)∈X (Z)×Z

f (x, y) − min
(x,y)∈X (Z)×Z

f cvX (Z)×Z (x, y)

≤ τ cvf w(Z)
βcv
f .

The desired result follows by analogy to Lemma 5 based on the assumption that (L (Z))Z∈IY
is at least β-order convergent at yS. ��
A.3 Proof of Proposition 3

Proposition 3 Consider Problem (P) with mE = 0. Suppose yS ∈ Y is an unconstrained
point in the reduced-space. Furthermore, suppose the reduced-space dual lower bounding
scheme has convergence of order β > 0 at yS. Then the reduced-space dual lower bounding
scheme has arbitrarily high convergence order at yS.

Proof The proof is closely related to the proof of Proposition 1.
Since yS is an unconstrained point in the reduced-space and g j is continuous for each

j ∈ {1, . . . ,mI } by virtue of Assumption 1, there exists δ > 0 such that ∀z ∈ Y satisfying
‖z − yS‖∞ ≤ δ (see Lemma 2), we have g(x, z) < 0,∀x ∈ X .

Consider Z ∈ IY with w(Z) ≤ δ. Since g(X (Z) × Z) ⊂ R
mI− , Problem (P) can be

reformulated as

min
(x,y)∈F (Z)

f (x, y) = min
(x,y)∈X (Z)×Z

f (x, y).

The dual lower bound can be bounded from below as

sup
μ≥0

min
(x,y)∈X (Z)×Z

[
f (x, y) + μTg(x, y)

] ≥ min
(x,y)∈X (Z)×Z

f (x, y).

The desired result follows by analogy to Lemma 5 and the assumption that the dual lower
bounding scheme is at least β-order convergent at yS. ��
A.4 Proof of arguments in Example 18

Proof We first show that x fZ − x∗ ≥ 0.2ε + o (ε).

x fZ − x∗

=
(√(exp(3 − yU)

)2 + 40 + 2
(
exp(3 − yU) − exp(3 − y∗)

)− exp(3 − yU)

2

−
√

(exp(3 − y∗))2 + 40 − exp(3 − y∗)
2

)

=
((
exp(3 − yU)

)2 − (exp(3 − y∗))2
)

+ 2
(
exp(3 − yU) − exp(3 − y∗)

)

2

(√(
exp(3 − yU)

)2 + 40 + 2
(
exp(3 − yU) − exp(3 − y∗)

)+
√

(exp(3 − y∗))2 + 40

)

+
(
exp(3 − y∗) − exp(3 − yU)

)
2

=
(
exp(3 − yU) + exp(3 − y∗) + 2

) (
exp(3 − yU) − exp(3 − y∗)

)
2

(√(
exp(3 − yU)

)2 + 40 + 2
(
exp(3 − yU) − exp(3 − y∗)

)+
√

(exp(3 − y∗))2 + 40

)

123



810 J Glob Optim (2018) 71:753–813

+
(
exp(3 − y∗) − exp(3 − yU)

)
2

≥ (exp(3 − y∗) + exp(3 − y∗) + 2)
(
exp(3 − yU) − exp(3 − y∗)

)
2

(√
(exp(3 − y∗ − 0.1))2 + 40 + 2 (exp(3 − y∗ − 0.1) − exp(3 − y∗)) +

√
(exp(3 − y∗))2 + 40

)

+
(
exp(3 − y∗) − exp(3 − yU)

)
2

≥ 0.025
(
exp(3 − y∗) − exp(3 − yU)

)
= 0.025 exp(3 − y∗)ε + o (ε)

≥ 0.2ε + o (ε) .

Next, we derive an expression for x̄Z (y) − x∗(y).

x̄Z (y) − x∗(y) =
(√(exp(3 − yL)

)2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)− exp(3 − yL)

2

−
√

(exp(3 − y))2 + 40 − exp(3 − y)

2

)

=
((
exp(3 − yL)

)2 − (exp(3 − y))2
)

+ 4xUZ
(
exp(3 − yL) − exp(3 − y)

)

2

(√(
exp(3 − yL)

)2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)+
√

(exp(3 − y))2 + 40

)

+
(
exp(3 − y) − exp(3 − yL)

)
2

=
(
exp(3 − yL) + exp(3 − y) + 4xUZ

) (
exp(3 − yL) − exp(3 − y)

)
2

(√(
exp(3 − yL)

)2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)+
√

(exp(3 − y))2 + 40

)

−
(
exp(3 − yL) − exp(3 − y)

)
2

. (11)

We next establish the dependence of the different terms in Eq. (11) on ε. We first derive an
expression for exp(3 − yL) + exp(3 − y) + 4xUZ .

exp(3 − yL) + exp(3 − y) + 4xUZ

= exp(3 − y∗ + ε) + exp(3 − y) + 2
√

(exp(3 − y∗ − ε)2 + 40 − 2 exp(3 − y∗ − ε)

= exp(3 − y∗) + exp(3 − y) + ε exp(3 − y∗) + O(ε2)

+ 2
√

(exp(3 − y∗))2
[
1 − 2ε + O(ε2)

]+ 40 − 2 exp(3 − y∗)
[
1 − ε + O(ε2)

]

= 2
√

(exp(3 − y∗))2 + 40 + exp(3 − y) − exp(3 − y∗) + 3 exp(3 − y∗)ε

− 2 (exp(3 − y∗))2 ε√
(exp(3 − y∗))2 + 40

+ O(ε2).

Next, we derive an expression for 4xUZ
(
exp(3 − yL) − exp(3 − y)

)
.

4xUZ
(
exp(3 − yL) − exp(3 − y)

)

=
(
2
√

(exp(3 − y∗ − ε)2 + 40 − 2 exp(3 − y∗ − ε)

) (
exp(3 − y∗ + ε) − exp(3 − y)

)
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=
(
2
√

(exp(3 − y∗))2 + 40 − 2 exp(3 − y∗)
) (

exp(3−y∗+ε)−exp(3 − y)
)+ O(ε2)

=
(
2
√

(exp(3−y∗))2+40−2 exp(3−y∗)
) (

exp(3−y∗)−exp(3−y)+exp(3−y∗)ε
)

+ O(ε2).

Finally, we consider
√(

exp(3 − yL)
)2 + 40 + 4xUZ

(
exp(3 − yL) − exp(3 − y)

)
+
√

(exp(3 − y))2 + 40.√(
exp(3 − yL)

)2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)+
√

(exp(3 − y))2 + 40

=
√

(exp(3 − y∗ + ε))2 + 40 + 4xUZ
(
exp(3 − yL) − exp(3 − y)

)+
√

(exp(3 − y))2 + 40

=
√

(exp(3 − y∗))2 + 40

√
1 + 4xUZ

(
exp(3 − yL) − exp(3 − y)

)+ 2 (exp(3 − y∗))2 ε + O(ε2)

(exp(3 − y∗))2 + 40

+
√

(exp(3 − y))2 + 40

=
√

(exp(3 − y∗))2 + 40 +
√

(exp(3 − y))2 + 40 + (exp(3 − y∗))2 ε√
(exp(3 − y∗))2 + 40

+

(√
(exp(3 − y∗))2 +40− exp(3 − y∗)

)
(exp(3−y∗)− exp(3−y)+ exp(3 − y∗)ε)

√
(exp(3 − y∗))2 +40

+O(ε2).

Substituting the above expressions in Eq. (11), we get

x̄Z (y) − x∗(y)

=
α
(
exp(3 − yL) − exp(3 − y)

)

2

(√(
exp(3 − yL)

)2 + 40+4xUZ
(
exp(3 − yL)− exp(3 − y)

)+
√

(exp(3 − y))2 + 40

) ,

with

α :=
√

(exp(3 − y∗))2 + 40 −
√

(exp(3 − y))2 + 40 + exp(3 − y) − exp(3 − y∗)

−

(√
(exp(3 − y∗))2 + 40 − exp(3 − y∗)

)
(exp(3 − y∗) − exp(3 − y))

√
(exp(3 − y∗))2 + 40

+ 3 exp(3 − y∗)ε − 3 (exp(3 − y∗))2 ε√
(exp(3 − y∗))2 + 40

−

(√
(exp(3 − y∗))2 + 40 − exp(3 − y∗)

)
exp(3 − y∗)ε

√
(exp(3 − y∗))2 + 40

+ O(ε2)

=
⎛
⎝ exp(3 − y∗) + exp(3 − y)√

(exp(3 − y∗))2 + 40 +
√

(exp(3 − y))2 + 40
− 1

⎞
⎠(exp(3 − y∗)−exp(3 − y)

)
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−

(√
(exp(3 − y∗))2 + 40 − exp(3 − y∗)

)
(exp(3 − y∗) − exp(3 − y))

√
(exp(3 − y∗))2 + 40

+ 3 exp(3 − y∗)ε − 3 (exp(3 − y∗))2 ε√
(exp(3 − y∗))2 + 40

−

(√
(exp(3 − y∗))2 + 40 − exp(3 − y∗)

)
exp(3 − y∗)ε

√
(exp(3 − y∗))2 + 40

+ O(ε2)

≤ τ̂ ε + O(ε2)

for some τ̂ ≥ 0 since y ∈ Z = [yL, yU] with w(Z) = O(ε) and each term in the expression
for α is O(ε). Note that α ≥ 0 (since x̄Z (y) ≥ x∗(y), ∀y ∈ Z ). ��
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