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Identification of directional influences in multivariate systems is of prime importance in several applications of
engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences.
A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence
(PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based
technique is simple and effective, but being a linear directionality measure has limited applicability. On the other
hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically
implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality
measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes.
The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation
measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated
using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and
important theoretical results are established. A permutation scheme combined with the sequential Bonferroni
procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case
studies that the proposed methodology effectively detects Granger causality in nonlinear processes.
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I. INTRODUCTION

Identification of causal relationships in multivariate sys-
tems is an important problem in many scientific areas.
Identifying whether the influence between a pair of signals
is along a direct or an indirect path is a key step in recon-
structing the structure of a process. Determining the process
structure using process flow sheets is usually a tedious process
and, thus, it is practical to adopt a data-driven approach.
Furthermore, a data-driven analysis also reveals the strength
of connectivities. The problem of connectivity reconstruction
appeals to a diverse set of scientific areas and applications,
namely, plant topology reconstruction [1,2], fault detection
and diagnosis [3], econometrics [4,5], neurosciences [6,7], and
climatology [8]. Since most physical systems are nonlinear and
multivariable in nature, it is necessary to work with an efficient
causality detection method that can handle nonlinearities in a
multivariable framework.

A variety of data-driven causality detection measures have
emerged over the past two decades for analyzing inter-
relationships in multivariate processes. The majority of these
measures rely on the concept of Granger causality (GC).
Among them, linear measures, particularly partial directed
coherence (PDC) [7] and directed transfer function (DTF) [6]
(frequency domain), have proven to be effective in detecting
direct and total couplings between variables. Partial directed
coherence and directed transfer function are normalized
measures of the direct and total influence exerted by a source
in the j th channel on a variable in the ith channel of a
multivariate process. In reconstructing the connectivity, PDC
is preferred to DTF since the latter measures both the direct
and indirect influences between a pair of variables [7,9].
However, the non-normalized directed transfer function can
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be split into direct and indirect transfer functions from which
one can obtain a causal measure [10]. It is shown in [10]
that the squared magnitude of the direct transfer function,
called the direct energy transfer, is an exact measure of the
connectivity strength unlike PDC which offers a qualitative
measure. Although PDC and DTF are theoretically applicable
only to linear systems, they have been applied to nonlinear
systems with some success [11,12]. It has been observed
that linear Granger causality detection measures work well
when a good linear approximation of the nonlinear system is
available in the working regime [13,14]. However, the success
of linear measures in detecting nonlinear causal relationships
depends on the extent of nonlinearity. The use of PDC
for nonlinear systems can lead to spurious links [15,16] as
shown in Sec. IV. While nonparametric versions of PDC
exist [17], they require a comparatively larger amount of data
and a reliable significance level analysis to avoid spurious
detections.

A comprehensive review of causality measures for non-
linear systems is presented in [18]. A predominant number
of these methods such as transfer entropy [19], correction,
and partitioning methods fall under the class of information-
theoretic approaches [18], while others such as neural network
[20] and kernel-based methods [2,21,22] are primarily based
on the construction of nonlinear predictor structures for the
variables of interest. Information-theoretic approaches rely on
estimates of entropy, which can be obtained in a parametric
or a non-parametric fashion. A comprehensive review of the
various commonly employed information-theoretic causality
detection methods is presented in [18]. While the linear causal-
ity measures have gained wide acceptance for multivariable
systems, nonlinear multivariate measures are associated with
a great deal of computational burden. An added impediment
is the lack of tractable statistical methods for computing
errors in the resulting estimates, a standard difficulty with
nonlinear methods. Transfer entropy, introduced by Schreiber
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[19], is a popular nonparametric method for nonlinear causality
detection. Transfer entropy is a Kullback-Leibler divergence
of conditional probability density functions (pdfs) [18]. Thus
the estimation of transfer entropy requires estimates of the
conditional pdfs concerning the variables in a nonparametric
fashion. Schreiber [19] suggested the use of correlation
integrals and kernel density estimators for conditional pdf
estimation. The estimation of transfer entropy requires the
specification of the number of past observations (based on the
order of the system) of the cause and effect variables to be used
in the construction of the joint pdfs. For multivariable systems,
the number of arguments in the joint pdfs is larger than that
for bivariate processes. The size of data and the computational
effort required for an accurate estimate of transfer entropy
increase exponentially with the dimensionality of the joint pdf
[23], leading to what is called the curse of dimensionality [18].
A practical application of transfer entropy is thus restricted to
bivariate processes, while an extension to trivariate processes
is explored in [24]. Further, it is observed that the kernel width
used in density estimation significantly affects the quality of
the pdf estimates [25,26].

Diks and DeGoede [27] introduced another measure of
Granger causality in nonlinear systems using the concept of
correlation integrals, and showed that their measure is closely
related to the information-theoretic measures. Their proposed
method essentially involves the computation of conditional
entropy using correlation integrals, which provide a non-
parametric estimate of GC. Paluš et al. [28] use conditional
mutual information as a measure for inferring causal relations,
which is essentially equivalent to using transfer entropy.
Estimation procedures of several other entropy-based methods
are discussed in [18].

In a study by Marinazzo et al. [21], a kernel-based method
for GC in nonlinear systems is proposed and simulations are
performed on rat EEG data using polynomial and Gaussian
kernels. Marinazzo et al. have also employed kernel based
techniques for the analysis of dynamical networks [2] and
neural data [22]. However, the authors in [22] report certain
cases where linear Granger causality measures outperform
their kernel-based GC approach. Ancona et al. [20] have
addressed the problem of bivariate nonlinear causality de-
tection by constructing a radial basis function network over
the time series data. A serious drawback of most of the above
approaches is that the analysis is restricted to bivariate systems
and an extension to the multivariate case has not been outlined.
From an overall viewpoint, existing nonlinear measures are
quite restrictive in terms of practical implementation.

Santamaria et al. [26] proposed a generalized correla-
tion measure named correntropy, which combines both the
time structure and the statistical distribution of the ran-
dom variables. Unlike correlation, correntropy captures the
higher-order moments of the probability density function
(pdf) of a random variable and can thus identify nonlinear
characteristics. Motivated by the computational simplicity and
the ability of correntropy to detect nonlinearities, Park and
Prı́ncipe [29] adopted an approach for causality detection
in nonlinear processes wherein they employ the standard
time domain GC detection approach using correntropy as a
measure of correlation in the kernel space. By constructing
an autoregressive model of an appropriate order in the kernel

space, the authors in [29] check for causal links by looking
at the estimates of variances of the error terms of the
predictions. However, the authors restrict their analysis to
bivariate processes.

The major contribution of this work is an efficient measure
for causality detection in multivariate nonlinear processes.
This article explores the extension of PDC to nonlinear systems
using the definition of a generalized correlation function
(correntropy). An efficient method for the implementation of
the proposed measure is provided and important theoretical
results are established.

The organization of this work is as follows. Section II
presents a brief review of the fundamental concepts necessary
for the developments in this article. Section III formulates
the problem of estimation of KPDC and provides an efficient
implementation procedure along with guidelines for choosing
key parameter values. The simulation results in Sec. IV
demonstrate the ability of kernel PDC when applied to several
nonlinear multivariable systems of varied nature. This article
ends with a few concluding remarks in Sec. V.

II. BACKGROUND

In this section, a brief review of PDC and its estimation
procedure from a VAR model is provided. A brief introduction
to correntropy along with interpretations is also included.

A. Partial directed coherence (PDC)

Coherence is a commonly used frequency domain measure
of the linear relationship between two variables [30] defined
by

Cij (ω) = |Sij (ω)|2
Sii(ω)Sjj (ω)

, (1)

where S(ω) denotes the cross-spectral power-density matrix.
The multivariate counterpart of coherence is partial coherence,
which measures the coherence between two signals after
accounting for the effects of the other signals (confounding) in
the process. Coherence measures the total association between
two variables, which could be due to direct, indirect, or that
arising from the confounding by other variables, while partial
coherence is a measure of the direct association. However,
both coherence and partial coherence, being symmetric, fail to
provide the directionality information.

The directionality information was first addressed by Saito
and Harashima [31], who proposed the notion of directed
coherence using information theoretic arguments for bivariate
series. Directed coherence is a decomposition of coherence
into components involving directed influences along feed-
forward and feedback pathways. The directed coherence [7]
between the source variable xj and the effect variable xi , for
diagonal covariance matrices �e, is given by

˜̃γij (ω) = σjjhij (ω)√
Sii(ω)

, (2)

where the quantities hij (ω) and Sij (ω) denote the ij th elements
of the transfer function matrix H(ω) and the spectral matrix
S(ω), respectively (see Appendix B).
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For nondiagonal noise covariance matrices, a directed
coherence function is defined as

γ̃ij (ω) = hij (ω)√
hi.(ω)�eh

∗
i.(ω)

= hij (ω)

Sii(ω)
, (3)

where hi. refers to the ith row of H(ω).
Similarly, a partial directed coherence function, based on

the decomposition of partial coherence, is defined as

π̃ij (ω) = āij (ω)√
ā∗

.j (ω)�−1
e ā.j (ω)

= (H )−1
ij (ω)√

(S)−1
jj (ω)

, (4)

where āij and ā.j denote the ij th element and j th column of
Ā(ω) = H−1(ω).

On forsaking the covariance term in the partial directed
coherence function, one obtains PDC [7]

πij (ω) = āij (ω)

ā∗
.j (ω)ā.j (ω)

= āij (ω)∑m
i=1 |āij (ω)|2 . (5)

The estimation of the above quantities are carried out by a VAR
modeling of the jointly stationary process (see Appendix A).
From the expression for PDC in Eq. (5), one can see that the
normalization is with respect to the effect variable unlike in
the directed transfer function where the normalization is with
respect to the source:

m∑
i=1

|πij (ω)|2 = 1. (6)

Although PDC provides structural information about the
system, it is not a quantitative measure of the level of
interaction unlike the direct energy transfer [10]. Further, PDC
provides consistent estimates only in the cases when the errors
in the variables are uncorrelated and there is no instantaneous
causality.

B. Correntropy

Most common measures of similarity between two random
variables, such as correlation (in the time domain) and coher-
ence (in the frequency domain), are restricted to second-order
statistics. These statistics are easy to estimate and implement.
The effectiveness of these statistics, however, depends heavily
on the assumptions of Gaussianity and linearity. Various
information theoretic measures such as mutual information
exist, which capture information pertaining to the higher-order
moments of the probability density functions (pdfs) describing
the random variables.

Physical processes of interest are composed of two principal
characteristics: statistical distribution and time structure. Ex-
isting measures of similarity for stochastic processes either in-
corporate information about the time structure or the statistical
distribution, but not both. Nonlinearity of signals is generally
associated with non-Gaussianity, since most measures do not
have the ability to distinguish between statistical distribu-
tions. Inspired by information theoretic learning methods,
Santamaria et al. [26] developed a generalized correlation
measure named correntropy, which incorporates information
from higher-order statistics apart from the time structure.
Correntropy is broadly defined in terms of the inner product

(correlation) of two vectors in a higher-dimensional space,
which is efficiently described by a reproducing kernel. The
definition of the generalized correlation function proposed by
Santamaria et al. [26] makes use of the Gaussian kernel as the
kernel function.

The kernel function is a function which satisfies Mercer’s
theorem, inducing a nonlinear mapping φ which transforms
data from the input space to a higher-dimensional reproducing
kernel Hilbert space (RKHS) F,

kσ (x,y) = 〈φ(x),φ(y)〉F, (7)

where σ is a parameter of the kernel function. For the
translation-invariant Gaussian kernel, which is used in the
definition of correntropy, we have

kσ (x,y) = kσ (x − y) = 1√
2πσ

exp −
(‖x − y‖2

2σ 2

)
, (8)

where σ is the kernel width.
A general form of correntropy between two scalar random

variables (also called cross correntropy) X and Y is defined as
[26]

V (X,Y ) = E[k(X − Y )]. (9)

On using the Taylor’s series expansion for the Gaussian
function, the autocorrentropy function reduces to

V (t1,t2) = E[kσ (x[t1] − x[t2])]

= 1√
2πσ

∞∑
n=0

(−1)n

2nσ 2nn!
E[‖x[t1] − x[t2]‖2n]. (10)

Thus, for correntropy to be a function of the lag (t1 − t2)
alone, we require the process to be strictly stationary on all
the even moments. This is a weaker requirement compared
to strict stationarity and a stronger requirement compared to
wide-sense stationarity, and shall be assumed throughout our
analysis. An estimate of autocorrentropy can be obtained from

V̂ [l] = 1

N − l + 1

N∑
n=l

k(x[n] − x[n − l]). (11)

The above estimator of autocorrentropy is both unbiased and
consistent. A similar expression holds for the estimator for
cross correntropy,

V̂ (X,Y )[l] = 1

N − l + 1

N∑
n=l

k(x[n] − y[n − l]). (12)

Since correntropy incorporates information about the
higher-order moments of the random variable, it is able
to distinguish between processes with different underlying
distributions. Further, since correntropy is a (linear) measure
of similarity (correlation) in a higher-dimensional space, it is
observed that correntropy is able to capture the nonlinearities
in the system unlike correlation, which is a linear measure in
the input space.

From the expression for correntropy in Eq. (10), one can see
that, as the kernel width σ increases, the higher-order moments
decay and correntropy reduces to the conventional correlation
function. In order to obtain a meaningful interpretation of
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FIG. 1. (Color online) Autocorrentropy estimates for the system
defined in Eq. (13) for R = 28, σ = 10, and b = 10

3 .

similarity, the kernel width is tuned using Silverman’s rule
[32,33] as a guideline.

An example of correntropy estimation for the chaotic
Lorenz attractor system [26] described by

ẋ = σ (y − x), ẏ = −y − xz + Rx, ż = xy − bz (13)

is shown in Fig. 1. It is observed that the correntropy estimates
are able to capture the nonlinear coupling information embed-
ded in the time structure of the process unlike the estimates
of correlation, shown in Fig. 2. The reader is directed to
[26,34–36] for further discussions on correntropy.

III. KERNEL PDC

In this section, we present the extension of PDC to nonlinear
systems using the kernel trick and correntropy. Since PDC and
correntropy are efficient indicators of Granger causality and
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FIG. 2. (Color online) Autocorrelation estimates for the system
defined in Eq. (13) for R = 28, σ = 10, and b = 10

3 .

nonlinearity, respectively, the proposed method is efficient in
detecting structural and directional relationships in nonlinear
systems. As outlined in Sec. II, PDC requires the estimation of
a VAR model from data. While an estimate of PDC in the input
space is only an indicator of linear Granger causality, estimates
of PDC in the kernel space can handle nonlinear processes as
well. The kernel space is described by the Gaussian kernel,
which is an implicit mapping kernel (because it induces an
infinite dimensional nonlinear transformation), i.e., an explicit
representation of the data in the kernel feature space is not
possible. Let φ denote the nonlinear transformation, induced
by the Gaussian kernel, from the input space to the kernel
space. PDC is estimated in the kernel space as

φ(x[k]) = −
p∑

r=1

Aφ
r φ(x[k − r]) + v[k], (14)

π
φ

ij (ω) = ā
φ

ij (ω)

(āφ)∗.j (ω)āφ

.j (ω)
= ā

φ

ij (ω)∑m
i=1

∣∣āφ

ij (ω)
∣∣2 , (15)

where

Āφ(ω) = I − Aφ(ω), Aφ(ω) =
p∑

r=1

Aφ
r z−r

∣∣∣∣∣
z=e−jω

. (16)

Since φ is not known explicitly, the transformed values of
the random signals are not computable. However, in order
to estimate the coefficients of the VAR model in Eq. (14),
it is sufficient to know the covariance between the variables
in the kernel space at various lags. Thus, using an estimator
of correntropy as detailed in Eq. (12), a VAR model can be
estimated in the kernel space using data in the input space. A
brief outline of the estimation procedure is presented.

A. Estimation of kernel PDC

Consider an m-dimensional multivariate process, denoted
by the vector x = [x1 x2 · · · xm]T. Let φ be the nonlinear trans-
formation induced by the Gaussian kernel, which transforms
data vectors from the input space to the kernel feature space.
Let the transformed vector be denoted by xφ[=φ(x)]. A VAR
model (to be estimated) in the kernel feature space is expressed
by

xφ[k] = −
p∑

r=1

Aφ
r xφ[k − r] + v[k], (17)

where v is the driving force (innovations) and the negative sign
is added for notational convenience.

Denote by V[l] the correntropy matrix at lag l, i.e., V[l] =
[V (Xi,Xj )[l]]i,j=1,...,m. The coefficient matrices Ar can be
estimated using the Yule-Walker equations [37] in the kernel
space,

p∑
r=0

Aφ
r V[r] = �v,

q−1∑
r=0

Aφ
r VT[q − r] +

p∑
r
′=q

Aφ

r
′V[r

′ − q] = 0,

q = 1, . . . ,p. (18)
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After the estimation of the coefficient matrices, PDC in the
kernel space, hereafter referred to as kernel PDC (KPDC), is
estimated in a manner similar to PDC using Eqs. (A3) and (5):

Aφ(ω) =
p∑

r=1

Aφ
r z−r

∣∣∣∣∣
z=e−jω

,

Āφ(ω) = I − Aφ(ω),

�ij (ω) = ā
φ

ij (ω)

ā
φ∗
.j (ω)āφ

.j (ω)
= ā

φ

ij (ω)∑m
i=1

∣∣āφ

ij (ω)
∣∣2 . (19)

In order to obtain a meaningful VAR model in the kernel
feature space, one has to choose an appropriate value of the
kernel width parameter. The kernel width plays an important
role in the performance of KPDC (�) since it determines the
scale at which similarity is quantified. A heuristic to determine
a suitable value of the kernel width is given by Silverman’s
rule [33]

σ ∗ = 0.9AN−0.2, (20)

where

A = min(σd,1.34×RIQ).

σd is the sample standard deviation, RIQ is the interquartile
range, and N is the sample size. It is noteworthy that when the
kernel width is large (>20σ ∗), estimates of KPDC reduce to
those of PDC [34], ensuring that “ordinary PDC” is contained
in the KPDC. The associated lemma and its proof are presented
at the end of this section.

For a mean-centered estimate, one has to use centered
correntropy for estimating KPDC akin to the use of centered
correlation for estimating PDC. The centered correntropy U

between two random variables X and Y is estimated using [29]

Û (X,Y )[l] = 1

N − l + 1

N∑
n=l

k(x[n] − y[n − l])

− 1

N2

N∑
i=1

N∑
j=1

k(x[i] − y[j ]). (21)

The latter term in the definition of centered correntropy is
called the cross information potential (CIP), which when
computed exactly has a computational complexity of O(N2).
When the sample size N is large, computing the exact cross
information potential may be infeasible. Seth and Principe [38]
suggest the use of an incomplete Cholesky decomposition to
approximate the cross information potential when there exists
a sufficiently accurate lower-dimensional representation of the
kernel gram matrix K (in other words, only a few eigenvalues
of K are significant). The kernel gram matrix K is defined as

K = [kij ]i,j=1,...,N , (22)

where kij = k(xi,xj ). An estimate of the cross information
potential can be succinctly represented using the kernel gram
matrix as [38]

P̂(X,Y ) = 1

N2
1TKXY 1, (23)

where P is the cross information potential and 1 is a column
vector of ones. In order to reduce the computational effort, a
Cholesky decomposition of K is carried out [39]:

K = GGT. (24)

Here G is a lower triangular matrix with positive diagonal
entries. If only d out of the N eigenvalues of K are
significant, K can be approximated using ḠḠT where Ḡ is
an approximation of G and is of dimensions N × d. Since
Ḡ can be computed in O(Nd2) time [38], this approximation
can be effectively used to reduce the computational time of
correntropy, and hence KPDC.

Lemma 1. For large σ , estimates of KPDC asymptotically

reduce to that of PDC (i.e., �̂ij
N→∞−→ π̂ij for σ 
 1).

Proof. Consider two processes {x[k]}Nk=0 and {y[k]}Nk=0
with zero means and variances σ 2

x and σ 2
y . Denote by X and Y

the random variables generating {x[k]} and {y[k]}. An estimate
of the centered correntropy is obtained as

ÛXY [l] ≡ Û (X,Y )[l] = 1

N − l

N−1∑
n=l

k(x[n],y[n − l])

− 1

N2

N−1∑
n=0

N−1∑
m=0

k(x[n],y[m]),

where

k(x,y) = 1√
2πσ

exp −
( ||x − y||2

2σ 2

)
.

For large σ , using Taylor’s series expansion, we have

ÛXY [l] ≈ 1

N − l

N−1∑
n=l

1√
2πσ

(
1 − 1

2σ 2
(x[n] − y[n − l])2

)

− 1

N2

N−1∑
n=0

N−1∑
m=0

1√
2πσ

(
1 − 1

2σ 2
(x[n] − y[m])2

)

= − 1√
2πσ

1

2σ 2

[
σ̂ 2

x + σ̂ 2
y − 2σ̂xy[l]

]

+ 1√
2πσ

1

2σ 2

[
σ̂ 2

x + σ̂ 2
y −

N−1∑
n=0

N−1∑
m=0

2x[n]y[m]

N2

]

= 1√
2πσ

2σ̂xy[l]

2σ 2

− 1√
2πσ

1

2σ 2

⎡
⎣ 2

N

(N−1)∑
q=−(N−1)

(
1 − |q|

N

)
σ̂xy[q]

⎤
⎦

∴ ÛXY [l]
N→∞∼ cσ̂xy[l]

for large σ and finite order correlations between {x[k]} and
{y[k]} (where c is some constant independent of X and
Y ). Since the centered correntropy estimate asymptotically
reduces to the covariance estimate for large σ , from Eqs. (18)
and (19), KPDC reduces to PDC for large σ . �

An analysis of KPDC for linear processes for arbitrary σ

is detailed in Appendix C. We now prove the consistency of
KPDC estimates defined by (19).
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Theorem 2. The proposed estimator of correntropy � is
consistent.

Proof. In order to show that KPDC estimates are consistent,
we are required to show that �̂ij (ω) →p �ij (ω), where
ê(x1, . . . ,xn) →p e denotes that ê converges in probability to
e, i.e., limN→∞P (|ê(x1, . . . ,xN ) − e| � ε) = 1 ∀ ε > 0.

We make use of the following theorem, which can easily be
shown to be true using Chebyshev and triangle inequalities.

Theorem 3. Let θ̂ →p θ , η̂ →p η. Then g(θ̂ ,η̂) →p g(θ,η)
for any real-valued continuous function g.

Proof. See Sec. 2.1 in [40]. �
An estimate of KPDC between the ith and j th variables is

obtained as

�̂ij (ω) =
ˆ̄aφ

ij (ω)∑m
i=1

∣∣ ˆ̄aφ

ij (ω)
∣∣2 ,

ˆ̄aφ

ij (ω) =
(

I −
p∑

r=1

Arz
−r
∣∣∣
z=e−jω

)
ij

,

Ar = D(ÛXY [l]),

ÛXY [l] = 1

N − l

N−1∑
n=l

k(x[n],y[n − l])

− 1

N2

N−1∑
n=0

N−1∑
m=0

k(x[n],y[m]),

where D(ÛXY [l]) represents the estimation of the auto-
regressive coefficients from the estimates of centered corren-
tropy using the Durbin-Levinson procedure.

Using a combination of theorem 3 and the proof of
consistency of the DL estimator (under, of course, the right
modeling assumptions) in [41], we conclude that the estimator
of KPDC as defined is consistent. �

B. Null hypothesis and the testing scheme

The test of Granger causality involves testing for the
significance of off-diagonal terms (at all frequencies) in the
KPDC matrix under the null hypothesis:

H0: �ij (ω) = 0, 1 � i,j � m,i �= j, ∀ω ∈ �,

where m denotes the number of variables of interest and �

denotes the set of frequencies at which KPDC is computed.
Obtaining theoretical significance levels, however, appears

elusive at present since the distributional properties of KPDC
are hard to derive. Therefore, a standard permutation test is
employed against the null hypothesis that there is no causal
link between any two variables of interest. A permutation test
[42] involves randomly permuting the time series associated
with the variables of interest to remove possible causal links
and then evaluating the test statistic on the permuted data
[43]. Subsequently, a significance level is empirically derived
to determine possible deviations from the null hypothesis. A
consequence of adopting the permutation test is that a system-
specific value derived from the data, rather than a universal
critical value, under the null hypothesis is applied to the off-
diagonal terms.

Testing all the off-diagonal terms of KPDC is clearly a mul-
tiple hypothesis testing approach. Thus the usual requirement
that the probability of falsely rejecting the null hypothesis
should not exceed α (control of the type I error) is replaced
by the requirement that the probability of one or more false
rejections should not exceed α. The latter probability is called
the family wise error rate (FWER), denoted by F [44]. Hence
we require that F � α for all possible constellations of true
and false hypotheses. This requirement is referred to as strong
control of the FWER [44].

To obtain significance levels for the family of �ij (ω) from
a multiple testing standpoint using a permutation test, we
compute a suitable percentile value for each �ij (ω) using
the (sequential) Bonferroni procedure [44,45] based on the
following lemma [44].

Lemma 4. (Bonferroni procedure) If, for i = 1, . . . ,s,
hypothesis Hi is rejected when p̂i � α

s
, then F � α (here

p̂i is the p value for testing each Hi).
Proof. See Theorem 9.1.1 in [44]. �
A significance level which ensures strong control of the

FWER is obtained by computing the 100 × (1 − α
s
) percentile

value for each �ij (ω). A slightly modified sequential stepdown
method for generating significance levels is obtained using
Holm’s procedure [45].

A possible drawback of the Bonferroni procedure is its
low statistical power [44,46,47]. However, the authors note
that application of the sequential Bonferroni procedure for
generating significance levels for KPDC has been successfully
employed in correctly uncovering all causal links for various
case studies (Sec. IV). A possible alternative for generating
significance levels, based on the so-called weak control of
the FWER [44], is a false discovery rate (FDR) based
approach [48]. Weak control of the FWER might yield a
multiple testing procedure with far greater power than the
Bonferroni procedure, and might be suitable when KPDC
estimates are highly correlated in the frequency domain.
Such a statistical approach could be the focus of future
investigations.

IV. SIMULATIONS

In this section, the performance of the proposed KPDC
measure for detecting Granger causality in nonlinear processes
is illustrated on several complex nonlinear systems. For the
first five case studies, a single realization of sample size 1000
(unless specified) of a nonlinear process is generated and the
performance of the proposed KPDC measure is illustrated. The
sixth case study considered is that of a five-variable nonlinear
system for which the KPDC is evaluated for several different
process realizations of different sample sizes. In addition, the
sensitivity of KPDC to the value of the kernel width (σ ) used is
analyzed for several different process realizations of the same
system.

The data generated in each example is normalized such that
the mean and variance of each variable are 0 and 1, respectively,
so as to obtain standard σ values using Silverman’s rule.
It is observed that KPDC is an efficient GC estimator and
correctly detects the causal relationships in most of the cases
for reasonable sample sizes. The (i,j )th plot (�̂ij ) indicates the
influence of the j th variable on the ith variable as determined
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FIG. 3. (Color online) Linear PDC for a = 1.8, s = 0.01, and c = 0.2 for the system defined in Eq. (25).

by KPDC. In each plot, the vertical axis corresponds to the
magnitude of PDC/KPDC (bounded between 0 and 1) and the
horizontal axis corresponds to the ordinary frequency (ranging
from 0 to 0.5). For the sake of visual clarity, the vertical axes
labels are omitted and, instead, variable names (corresponding
to the matrix of KPDC plots) are included along the rows and
columns for systems containing three or more variables. The
significance levels correspond to strong control of the FWER
at α = 0.01, and are indicated for the off-diagonal plots.

Example 1: Coupled noisy logistic maps

To illustrate the effectiveness of KPDC towards detecting
GC in nonlinear systems, we consider a bivariate coupled noisy
logistic map system [21] defined in Eq. (25). It is observed
from the system model that x1 causes x2 alone. However,
PDC spuriously detects a bidirectional causal relationship
between x1 and x2, highlighting its inability to deal with
nonlinear causal systems, while KPDC correctly uncovers the
causal relationship with a kernel width of 0.23 as seen in

Figs. 3 and 4:

x1[k] = 1 − ax2
1 [k − 1] + s e1[k],

x2[k] = (1 − c)
(
1 − ax2

2 [k − 1]
)

+ c
(
1 − ax2

1 [k − 1]
)+ s e2[k]. (25)

Example 2: Coupled nonlinear dynamical system

We consider a coupled nonlinear system [29] defined in
Eq. (26) to further illustrate the ability of KPDC in detecting
GC in nonlinear processes as opposed to PDC. For this system,
as observed from the model, x1 causes x2 alone. However, PDC
fails to detect the causal relationship between x1 and x2, while
KPDC correctly uncovers the causal relationship with a kernel
width of 0.23 as seen in Figs. 5 and 6:

x1[k] = 3.4x1[k −1]
(
1− x2

1 [k −1]
)
e−x2

1 [k−1] + 0.8x1[k − 2],

x2[k] = 3.4x2[k − 1]
(
1 − x2

2 [k − 1]
)
e−x2

2 [k−1]

+ 0.5x2[k − 2] + cx2
1 [k − 2]. (26)
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FIG. 4. (Color online) KPDC using σ = 0.23 for a = 1.8, s = 0.01, and c = 0.2 for the system defined in Eq. (25).
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FIG. 5. (Color online) Linear PDC for c = 0.8 for the system defined in Eq. (26).

The above two examples show the effectiveness of KPDC
over PDC in detecting causal relationships in nonlinear
systems, without a great addition of computational effort. In
the forthcoming examples, we investigate the performance of
KPDC for multivariable nonlinear systems, where confound-
ing has to be addressed in addition to the nonlinearity.

Example 3: Lorenz attractor system

In this example, we consider the popular chaotic Lorenz
attractor, defined in Eq. (13), as an example of a nonlinear
multivariable system. The parameter values used for the
simulation are R = 28, σ = 10, b = 10

3 and zero-mean, unit-
variance Gaussian white noise terms were added to each of the
states. For this system, as seen from the model, all variables
affect each other except for z not directly influencing x. From
the estimates of KPDC in Fig. 7, we observe that all the causal
relationships have been correctly identified.

Example 4: Non-Gaussian nonlinear system

We consider the three-variable system defined in Eq. (27)
where one of the variables (x1) has a non-Gaussian underlying
distribution [24]. We generate 6000 data points of the system
with x1[k] ∈ [4,5] falling out of a uniform distribution. To
assure stationarity, the first 3000 data points are discarded.
The driving forces are generated as v1[k],v2[k] ∼ N (0,0.05)
with the initial condition x3[0] = 0.2. From the model, it can
be seen that x1 causes both x2 and x3 and x3 causes x2. KPDC
correctly uncovers the three causal links as shown in Fig. 8.
This example illustrates that KPDC can uncover nonlinear
causal relationships among variables with distributions other
than the normal distribution:

x2[k] = 5(x3[k − 1] + 7.2)2 + 10
√

|x1[k − 1]| + v1[k],

x3[k] = 1− 2|0.5 − (0.8x1[k −1] + 0.4
√

x3[k −1])| + v2[k].

(27)
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FIG. 6. (Color online) KPDC using σ = 0.23 for c = 0.8 for the system defined in Eq. (26).
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FIG. 7. (Color online) KPDC using σ = 0.11 for the system defined in Eq. (13) for R = 28, σ = 10, and b = 10
3 .

Example 5: Three-state bioreactor model

In this example, we consider a three-state bioreactor model
explored by Lin and Stadtherr [49,50]. The three-state biore-
actor model [Eq. (28)] describes the concentration dynamics
of the cells (x1), the substrate (x2), and the product (x3),

ẋ1 = (μ − D)x1,

ẋ2 = D(x2f − x2) − μx1

Y
, (28)

ẋ3 = −Dx3 + (αμ + β)x1,

with the growth rate μ being a nonlinear function of both the
substrate and the product:

μ =
μmax

[
1 − x3

x3m

]
x2

ks + x2
. (29)

An initial concentration x10 = 6.50 g/L of the cells was
chosen, and the maximum growth rate μmax and the saturation
parameter ks were fixed to be 0.46 and 1.1, respectively.

The other parameters of the system were fixed as
follows: x20 = 5 g/L, x30 = 15 g/L, Y = 0.4 g/g, β =
0.2 h−1, D = 0.202 h−1, α = 2.2 g/g, x3m = 50 g/L, and
x2f = 20 g/L.

The system was simulated using SIMULINK and zero-
mean Gaussian white noise terms of variance 0.04 were added
to each of the states at each time instant. It is observed that
KPDC was able to extract all the causal links in the system
using a kernel width of 0.23, as shown in Fig. 9.

Example 6: Coupled map lattice system

We consider a five-variable stochastic coupled map lattice
[51], defined in Eq. (30), in which the strength of the
unidirectional coupling between pairs of adjacent maps of
the lattice is varied from 0.15 to 0.45 in increments of 0.10.
We generate 50 realizations of the above system for each of
the sample sizes 200, 500, 1000, and 2000 and evaluate the
performance of KPDC. The driving forces in (30) are assumed
to be normally distributed with zero mean and unit variance.
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FIG. 8. (Color online) KPDC using σ = 0.23 for the system defined in Eq. (27).
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FIG. 9. (Color online) KPDC using σ = 0.23 for the system defined in Eq. (28).

From the model, it can be seen that x1 causes x2, x2 causes x3,
x3 causes x4, and x4 causes x5:

x1[k] = 0.95x1[k−1] − 0.9025x1[k−2] + e1[k],

x2[k] = 1−2 | 0.5 − (0.15x1[k−1] + 0.35x2[k−1]) | +e2[k],

x3[k] = 1−2 | 0.5 − (0.25x2[k−1] + 0.25x3[k−1]) | +e3[k],

x4[k] = 1−2 | 0.5 − (0.35x3[k−1] + 0.15x4[k−1]) | +e4[k],

x5[k] = 1−2 | 0.5 − (0.45x4[k−1] + 0.05x5[k−1]) | +e5[k].

(30)

The performance of KPDC for different sample sizes is
listed in Table I, and a typical performance of KPDC for
a sample size of 1000 is shown in Fig. 10 for comparison
with the other case studies. The number of cases in which
KPDC was able to correctly detect all the causal relationships
for sample sizes 200, 500, 1000, and 2000 were 7, 32, 44,
and 49, respectively. It can be seen from Table I that KPDC
performs well for reasonably large sample sizes (1000 and
2000) and is fairly robust in correctly establishing the lack
of causal relationships between (relevant) variables even for
small sample sizes. However, KPDC is unable to consistently
detect the relatively weaker causal links (the causal influence
of x1 on x2) for the smaller sample size cases.

Impact of the kernel width on KPDC performance

The impact of the kernel width (σ ) on the performance of
KPDC was assessed by evaluating KPDC for 10 realizations
of the above system using 0.25σ ∗, 0.5σ ∗, σ ∗, 2σ ∗, and 4σ ∗
as kernel widths [where σ ∗ is the kernel width determined
using Silverman’s rule (20)]. The performance of KPDC for
the different kernel widths is listed in Table II. It can be seen
from Table II that KPDC performs well for the cases when
0.5σ ∗, σ ∗, and 2σ ∗ were used as kernel widths. However,
KPDC is either unable to detect the weaker causal links or
detects spurious causal links when the kernel width is either
too low or too high. This is consistent with the discussion on
correntropy in [34] where the kernel width is likened to a zoom
lens.

All the case studies were performed on a computer with a
8.00 GB RAM and a single 2.60 GHz CPU. The computation
time for a single realization of the five-variable system in (30)
for a sample size of 200 using the kernel width suggested by
Silverman’s rule was determined to be around 75 min. It was
observed that the computation time was an affine function of
the sample size, with the 2000 sample size case study using σ ∗
as the kernel width taking around 1000 minutes per realization,
and was an exponential function of the deviation of the kernel
width from Silverman’s rule, with the 1000 sample size case
studies using 0.25σ ∗ and 4σ ∗ as the kernel widths taking
around 5000 min and 210 min, respectively, per realization.

TABLE I. Performance of KPDC for 50 realizations each for sample sizes 200, 500, 1000, and 2000 (in that order, separated by commas)
using the kernel width suggested by Silverman’s rule. The (i,j )th cell contains the number of instances in which KPDC predicted that the j th
variable had a causal influence on the ith variable.

x1 x2 x3 x4 x5

x1 0,1,0,0 0,0,0,0 0,0,0,0 0,0,0,0
x2 7,32,45,50 0,0,0,0 0,0,0,0 0,0,0,0
x3 0,0,0,0 42,50,50,50 0,0,0,0 0,0,0,0
x4 0,0,0,0 0,0,0,0 50,50,50,50 0,0,0,0
x5 0,0,0,0 0,0,0,0 0,1,2,1 50,50,50,50

062144-10



CORRENTROPY-BASED PARTIAL DIRECTED COHERENCE . . . PHYSICAL REVIEW E 89, 062144 (2014)

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

ω/2π
0 0.5

0

0.5

1

ω/2π
0 0.5

0

0.5

1

ω/2π
0 0.5

0

0.5

1

ω/2π
0 0.5

0

0.5

1

ω/2π

x1

x 1
x 2

x 3
x 4

x 5

x2 x3 x4 x5

FIG. 10. (Color online) KPDC using σ = 0.23 for the system defined in Eq. (30) using a sample size of 1000.

The foregoing examples convincingly demonstrate the
ability of KPDC in detecting causal links in complex nonlinear
systems for reasonable sample sizes. It has been reported in
[26] that correntropy is not as sensitive to the value of the kernel
width chosen as kernel based density estimation methods [34].
This gives correntropy-based causality detection an advantage
over entropy-based methods which use pdf estimates using
kernel estimators.

V. CONCLUSIONS

This work presented a measure for detecting Granger
causality in a general nonlinear process obtained by extending
the idea of partial directed coherence to nonlinear systems
using the concept of a generalized correlation function. Issues
associated with the existing measures for detecting Granger
causality in nonlinear systems were discussed and a motivation
for a kernel-based GC measure was provided. The key idea in
the proposed method is to handle the nonlinearities through
a kernel transformation of the variables while still using
PDC in the feature (transformed) space. Theoretical and
practical issues concerned with this methodology have been
comprehensively studied. An estimator of KPDC has been
developed and its consistency has been established. Further,
the classical PDC has been shown to be a special case of
the proposed method. The main advantage of the proposed

method over existing measures is its ability to combine
PDC, a measure for linear systems, with an efficient estima-
tor of centered correntropy using the incomplete Cholesky
decomposition.

Computationally, KPDC is heavier than the classical ver-
sion, a naturally expected result. However, in principle, it is
significantly lighter than the transfer entropy based methods
due to the use of correntropy. An efficient implementation
methodology for the proposed method has been outlined in
this work. Simulation studies involving complex nonlinear
systems showed that KPDC effectively detects connectivity
in nonlinear processes in a Granger causal sense. A theoretical
basis for the proposed hypothesis testing scheme, however,
remains to be proved rigorously. The case studies also
highlighted the impact of kernel width on the performance of
KPDC and demonstrated that the method has good asymptotic
performance.

Directions for future study are along the lines of developing
an extension of direct energy transfer to nonlinear systems,
obtaining significance levels for KPDC using a false discovery
rate-based approach [48], mathematically proving that the
permutation significance level converges to the theoretical
significance level under the adopted permutation scheme,
and extending ideas to processes with heteroskedastic or
nonstationary noise sources in addition to the nonlinearity in
the functional form.

TABLE II. Performance of KPDC for 10 realizations each for kernel widths 0.25σ ∗, 0.5σ ∗, σ ∗, 2σ ∗, and 4σ ∗ (in that order, separated by
commas) using a sample size of 1000. The (i,j )th cell contains the number of instances in which KPDC predicted that the j th variable had a
causal influence on the ith variable.

x1 x2 x3 x4 x5

x1 0,0,0,0,8 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
x2 2,8,10,10,10 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
x3 0,0,0,0,0 6,10,10,10,10 0,0,0,0,0 0,0,0,0,0
x4 0,0,0,0,0 0,0,0,0,0 10,10,10,10,10 0,0,0,0,0
x5 0,0,0,0,0 0,0,0,0,0 0,0,0,1,0 10,10,10,10,10
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APPENDIX A: PDC ESTIMATION USING A VAR MODEL

A VAR model [52] is a commonly used representa-
tion to quantify linear relationships between variables in
a jointly stationary process. Consider an m-dimensional
jointly stationary multivariate process, denoted by the vector
x = [x1 x2 · · · xm]T. The VAR(p) model for the process is
represented as

x[k] =
p∑

r=1

Arx[k − r] + e[k], (A1)

where Ar is the m×m matrix of autoregressive coefficients
at lag r , e[k] is an m-dimensional vector of white noise
sequences, and p is the model order.

It is worthwhile to note two points here: (i) for a scalar (one-
dimensional) process, the matrix Ar reduces to a scalar giving
rise to the regular AR representation, and (ii) from a prediction
perspective, the quantity ej [k] due to its uncorrelated nature,
represents the unpredictable part or the innovation in xj [k].
The latter point gives rise to the usage of the term innovations
for ej [k]. The innovation sequence e[k] is characterized by its
covariance matrix �e. Often for simplicity, �e is assumed to
be a diagonal matrix, i.e., the cross correlation between ej [k]
and ei[k] is assumed to be zero.

An important quantity to be estimated in a VAR model is
the model order (p) which is seldom known a priori. Selecting
a low model order may result in loss of information captured
from the process, while choosing a high model order may tune
the model coefficients to explain the innovations in the process,
resulting in unreliable parameter estimates for the VAR model
(overfitting). A widely accepted criterion for selecting the
optimum model order is to minimize the Akaike information
criterion (AIC), which is given by [30]

AIC(p) = N ln[det(�e)] + 2m2p, (A2)

where AIC denotes the AIC and N is the number of obser-
vations. For the description of nonlinear processes, a high
model order is generally chosen to approximate the process
using a VAR model. The covariance of innovations, �e, is not
generally known and has to be estimated along with the model
parameters.

PDC, as detailed in Sec. II A, requires estimates of the
inverse transfer function matrix Ā(ω), which is efficiently
estimated by building a VAR model on the data [Eq. (5)].
An estimate of the transfer function matrix H(ω) can obtained

from the VAR model by

H(ω) = Ā−1(ω),

Ā(ω) = I − A(ω), (A3)

A(ω) =
p∑

r=1

Arz
−r

∣∣∣∣∣
z=e−jω

,

where A(ω) is the Fourier transform [53] of the VAR
coefficients Ar .

A useful interpretation of PDC estimates depends on the
reliability of the estimated VAR model. The chosen model
order thus plays a key role in the successful estimation of
PDC. Underfitting can lead to wrong estimates of the PDC and
hence one has to select the model order using a criterion such
as the AIC. The AIC is known to fit generally a higher-order
model. While it is observed that the PDC estimate is generally
invariant above a certain model order, it is noteworthy that too
high a model order may lead to oscillations in the estimated
PDC and may lead to spurious interpretations.

APPENDIX B: SPECTRAL FACTORIZATION THEOREM

The basis for the quantification of PDC and the direct
energy transfer (DET) is the well-known spectral factorization
theorem [54], which states that the cross power spectral density
of a jointly stationary process S(ω) can be factored as

S(ω) = H(ω)�eH∗(ω), (B1)

where �e is the covariance matrix of the innovations (white
noise) driving the multivariate process and H(ω) is the transfer
function matrix in the frequency domain. The superscript
(.)∗ denotes the Hermitian conjugate of the matrix. The
factorization is the key in the separation of direct and indirect
effects.

In the general scenario of an input-output multivariate
process, the input can be given the representation of a white
noise driven VAR process x[k] = [x1[k] x2[k] · · · xm[k]]T,
i.e., with power spectral density Sxx(ω) = Hx(ω)�eH∗

x(ω).
Subsequently for the output y[k], Syy(ω) = Hy(ω)SxxH∗

y(ω).
Such a model allows more flexibility in describing a variety of
situations (colored or correlated noise) encountered in practice.

APPENDIX C: ANALYSIS OF KPDC
FOR LINEAR SYSTEMS

Consider, as an example of two linearly related stationary
processes, {x[k]},{y[k]} satisfying

y[k] =
p∑

d=1

αdx[k − d] + v[k],

where {x[k]} and {v[k]} are Gaussian processes with means
zero, {x[k]} has an autocovariance sequence σxx , {v[k]} is a
white noise sequence with variance σ 2

v and p > 0, |α| < 1.
Assume that {x[k]} and {v[k]} are uncorrelated.
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The centered correntropy estimate between Y and X is obtained as

ÛYX[l] = 1

N − l

N−1∑
n=l

k(y[n],x[n − l]) − 1

N2

N−1∑
n=0

N−1∑
m=0

k(y[n],x[m])

= 1

N − l

N−1∑
k=l

1√
2πσ

∞∑
q=0

(−1)q

2qσ 2qq!
||y[k] − x[k − l]||2q

− 1

N2

N−1∑
n=0

N−1∑
m=0

1√
2πσ

∞∑
q=0

(−1)q

2qσ 2qq!
||y[n] − x[m]||2q . (C1)

Consider the rth term in the expansion:
∑∞

q=0
(−1)q

2qσ 2qq! ||y[n] − x[m]||2q ,

(−1)q

2qσ 2qq!
||y[n] − x[m]||2q

∣∣∣∣
q=r

= (−1)r

2rσ 2r r!
(y[n] − x[m])2r = (−1)r

2rσ 2r r!

2r∑
s=0

(
2r

s

)
(y[n])s(−x[m])2r−s

= (−1)r

2rσ 2r r!

[
2r∑

s=0

(
2r

s

)( p∑
d=1

αdx[n − d] + v[n]

)s

(−x[m])2r−s

]

= (−1)r

2rσ 2r r!

{
2r∑

s=0

(
2r

s

)[ s∑
t=0

(
s

t

)( p∑
d=1

αdx[n − d]

)t

(v[n])s−t

]
(−x[m])2r−s

}
.

Using the multinomial theorem

= (−1)r

2rσ 2r r!

⎧⎨
⎩

2r∑
s=0

(−1)s
(

2r

s

)⎡⎣ s∑
t=0

(
s

t

)
Qt,n,p(v[n])s−t (x[m])2r−s

⎤
⎦
⎫⎬
⎭,

where

Qt,n,p =
⎡
⎣ ∑

k1+···+kp=t

(
n

k1, . . . ,kp

) ∏
1�f �p

(αf x[n − f ])kf

⎤
⎦ .

Because {x[k]} and {v[k]} are uncorrelated Gaussian processes, they are independent and we have

E[(x[k − p1])a1 (v[k])a2 ] = E[(x[k − p1])a1 ]E[(v[k])a2 ].

The rth term contains the product (
∏

1�f �p (x[n − f ])kf )(x[m])2r−s(v[n])s−t , which when summed over m and n can be
interpreted as the product of a (t + 2r − s)th moment of X and a (s − t)th moment of V (this separability is valid because X

and V are independent Gaussian random variables). To express this more clearly, we interchange the order of summations and
first evaluate the summation over m and n for some generic term of the multinomial distribution. Consider the second term (T22)
in (C1):

T22 = 1

N2

N−1∑
n=0

N−1∑
m=0

1√
2πσ

∞∑
r=0

(−1)r

2rσ 2r r!

⎧⎨
⎩

2r∑
s=0

(−1)s
(

2r

s

)⎡⎣ s∑
t=0

(
s

t

)
Qt,n,p(v[n])s−t (x[m])2r−s

⎤
⎦
⎫⎬
⎭

= 1√
2πσ

∞∑
r=0

(−1)r

2rσ 2r r!

2r∑
s=0

(−1)s
(

2r

s

)⎧⎨
⎩

s∑
t=0

(
s

t

) ∑
∑
i

ki=t

(
n

k1, . . . ,kp

)

×
⎡
⎣ 1

N2

N−1∑
n=0

N−1∑
m=0

⎛
⎝ ∏

1�f �p

(x[n − f ])kf

⎞
⎠(x[m])2r−s(v[n])s−t

⎤
⎦
⎫⎬
⎭.

Evaluating the sums over m and n alone, we have

τm,n = 1

N2

N−1∑
n=0

N−1∑
m=0

⎛
⎝ ∏

1�f �p

(x[n − f ])kf

⎞
⎠ (x[m])2r−s(v[n])s−t .
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Using the independence property for the estimates, we obtain

=
⎡
⎣ 1

N2

N−1∑
n=0

N−1∑
m=0

⎛
⎝ ∏

1�f �p

(x[n − f ])kf

⎞
⎠ (x[m])2r−s

⎤
⎦( 1

N2

N−1∑
n=0

N−1∑
m=0

(v[n])s−t

)

=
⎡
⎣ 1

N2

N−1∑
n=0

N−1∑
m=0

⎛
⎝ ∏

1�f �p

(x[n − f ])kf

⎞
⎠ (x[m])2r−s

⎤
⎦( 1

N

N−1∑
n=0

(v[n])s−t

)
.

The latter term in τm,n can be easily computed (since {v[k]} is a Gaussian white noise process) in terms of σ 2
v alone.

The former term in τm,n is the expected value of a lagged (t + 2r − s)th moment of X. Since {x[k]} is a Gaussian random
process, we can rewrite the former term as the estimate of a higher-order moment of a multivariate normal distribution using
Isserlis’ theorem [55].

Hence the former term (T12) in τm,n can be written as a sum of several autocovariances of {x[k]} of orders (n − f − m), where
1 � n,m � N , 1 � f � p,

T12 =
⎡
⎣ 1

N2

N−1∑
n=0

N−1∑
m=0

⎛
⎝ ∏

1�f �p

(x[n − f ])kf

⎞
⎠ (x[m])2r−s

⎤
⎦

=
⎡
⎣ 2

N

N−1∑
q=−(N−1)

(
1 − |q|

N

)
M̂(q; kf (t),r,s)

⎤
⎦ ,

where M̂(q; kf (t),r,s) is the estimate of the lagged (t + 2r − s)th moment of X (m replaced by n − q), i.e.,

E
[
x[n − 1] · · · x[n − 1]︸ ︷︷ ︸

k1

· · · x[n − p] · · · x[n − p]︸ ︷︷ ︸
kp

x[n − q] · · · x[n − q]︸ ︷︷ ︸
2r−s

]
.

Note that the above defined T12 is valid for the second term in (C1), and asymptotically vanishes to zero with N for finite-order
autocorrelation sequences for {x[k]}. For the first term in (C1), we have m = k − l and n = k. Hence the first term of τm,n reduces
to

T11 =
⎡
⎣ 1

N − l

N−1∑
k=0

⎛
⎝ ∏

1�f �p

(x[k − f ])kf

⎞
⎠ (x[k − l])2r−s

⎤
⎦

= M̂(l; kf (t),r,s),

where M̂(l; kf (t),r,s) is the estimate of the following lagged (t + 2r − s)th moment of X:

E
[
x[k − 1] · · · x[k − 1]︸ ︷︷ ︸

k1

· · · x[k − p] · · · x[k − p]︸ ︷︷ ︸
kp

x[k − l] · · · x[k − l]︸ ︷︷ ︸
2r−s

]
.

Thus, from Isserlis’ theorem, we see that M̂(l; kf (t),r,s) can be written solely as a function of autocovariance estimates of {x[k]}
of orders belonging to the set {1,2, . . . ,p − 1,l − 1,l − 2, . . . ,l − p}. These are exactly the various lagged covariances that one
would obtain from the cross covariance of {y[k]} and {x[k]} and autocovariance of {y[k]}.

Thus the estimate of centered correntropy asymptotically reduces to

ÛYX[l] = 1√
2πσ

∞∑
r=0

(−1)r

2rσ 2r r!

2r∑
s=0

(−1)s
(

2r

s

)⎡⎣ s∑
t=0

(
s

t

) ∑
∑
i

ki=t

(
n

k1, . . . ,kp

)
M̂(l; kf (t),r,s)

(
1

N

N−1∑
n=0

(v[n])s−t

)⎤⎦,

which can be solely expressed in terms of autocovariances of {x[k]} and σ 2
v . Further from Isserlis’ theorem, we note that the

estimate of correntropy involves products of the estimates of autocovariances at various lags. Hence the estimate of correntropy
is not a linear function of the estimate of cross covariance, and thus KPDC estimates aren’t equivalent to PDC estimates for
linearly related processes (in general) for any σ .

However, we note that for a linear process of the form y[k] = αx[k − p] + v[k], normalized cross-correntropy estimates
are a function of the autocorrelation estimate at lag l − p (i.e., ρ̂[l − p]) alone, and for sufficiently small ρ̂[l − p], can be
approximated as a linear function of ρ̂[l − p], thus reducing to the cross-correlation function. Under such a scenario, KPDC is
equivalent to PDC for any kernel width σ .
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