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.
v =min  f(z)

st. Plg(x,8) <0} >1—a

o X compact convex, f quasiconvex, g : R” x R? — R™

o For each x € X, g(z, &) is a continuous random variable

e Can model joint chance constraints, recourse structure

Applications

e Financial systems with uncertain markets

e Power grid operation under renewable energy uncertainty

e Reliable design and control under model uncertainties

Central Hypothesis

Decision makers want to generate efficient frontier of

optimal objective function value (v*) versus risk level («)
see Rengarajan and Morton (2009)

)

Key reformulation

in P Oy = n K | - |
min P{g(z,¢) £ 0} mip B\ max | [1{g;(z, )]
s.t. flz) <v s.t. flx) <v
e : specified bound 1]

o1 [-]: step function oY1)
e Recover efficient
frontier by solving

0.5

—Step function

above problem
—Our approximation

e Challenge: hard to
oet stochastic gradients

%ﬂé Stochastic approximation for chance-constrained NLPs

Rohit Kannan! and Jim Luedtke'*

Approximating the efficient frontier

mip B max [1[g;(z,¢)l}| ~ min E \max|6(g;(z,¢);7;)]

st. f(z) < v st. f(z) < v

o Approximate step function 1 [-| using a parametric family of
smooth functions ¢(+; 7)

e Tailor choice of smoothing parameter 7 for each constraint
o Related work: Tamm (1979), Norkin (1993), Geletu et al. (2017), etc.

e Solve approximation using stochastic subgradient methods
o Related work: Norkin (1993), Lepp (1980), Andrieu et al. (2007), etc.

Motivation for stochastic approximation

Boundary of feasible region

e [ixterior sampling may lead to 2
spurious local minima, 15
see Curtis et al. (2018) 1
. 1
e Solution based on exterior 2
sampling may be suboptimal %2
pUNg May p - -True boundary
or computationally intensive 0 —SAA boundary
—--Our approximation
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Proposed Algorithm

Input: point 2 € X and objective bound 2" obtained from
scenario approximation, spacing v, risk lower bound oy,
Output: approximation {(v',a')} of the efficient frontier
repeat with:=1,2,---
Set objective bound ' = ' — (i — 1)v
Determine smoothing parameters (7;)" | scaled at &'~
repeat
Solve smooth approximation using projected stochastic
subgradient algorithm to get solution £*
Estimate risk a' of solution ' using a random sample
Refine approximations of step function [update (Tj);nﬂ]
until no significant decrease in &'
until &' < O ow
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Computational results

Portfolio optimization
e 1000 stocks with normally distributed returns &

e Budget: $1. Invest fraction x; € |0, 1] in stock ¢

e Maximize reliable revenue r such that P{¢'z > r! > 1 — o
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Resource planning (modified from Luedtke (2014))
e Meet demands of 30 customer groups for 20 resources
e Uncertainty in resource yields and customer demands

e Chance constraints with nonconvex recourse structure
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- Global opt. scenario approx.
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