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Setup

•Traditional SP formulation: min
z∈Z

EY [c(z, Y )]
•Data-driven SP: samples {yi}ni=1 of random variables Y
•Often also have data {xi}ni=1 of random features/covariates X
that can be used to predict Y

Applications

•Shipment planning under demand uncertainty

•Smart grid operation under renewables uncertainty

Formulation

v∗(x) = min
z∈Z

E [c(z, Y ) | X = x]

•X = x is a new random observation of the covariates
•Concurrent data Dn := {(yi, xi)}ni=1 of Y and X
•Let Y = f ∗(X) + ε, where f ∗(x) = E [Y | X = x]

• If we know f ∗, can solve min
z∈Z

1
n

n∑
i=1
c(z, f ∗(x) + εi)

Predict-then-smart-optimize frameworks

Learn model to predict Y given X = x, use as proxy for f ∗.
Use the residuals of this model on the training data Dn as
proxy for samples of the errors ε.

•Estimate f ∗ using the data Dn, e.g.,

f̂n(·) ∈ arg min
f∈F

1
n

n∑
i=1
`
(
yi, f (xi)

)
•Use empirical residuals ε̂in := yi − f̂n(xi) as proxy for
samples of ε within a SAA framework

ẑERn (x) ∈ arg min
z∈Z

1
n

n∑
i=1
c(z, f̂n(x) + ε̂in) (ER-SAA)

•Using leave-one-out residuals ε̂in,J := yi − f̂−i(xi) within the
SAA could work better with limited data

ẑJn(x) ∈ arg min
z∈Z

1
n

n∑
i=1
c(z, f̂n(x) + ε̂in,J) (J-SAA)

Theoretical guarantees

•Conditions on the SP and the learning step for asymptotic
optimality, rates of convergence of the ER-SAA, J-SAA solns
•Applicable to two-stage stochastic linear programs (LPs)
•Can handle general learning frameworks and time series data Dn
•For ER-SAA, the learning step must satisfy

f̂n(x) p−→ f ∗(x) and 1
n

n∑
i=1
‖f ∗(xi)− f̂n(xi)‖2 p−→ 0.

Setup for computational experiments

Two-stage resource allocation LP model
•Meet demands of 30 customers for 20 resources
•Uncertain demands Y generated according to

Yj = α∗j +
3∑
l=1
β∗jl(Xl)p + εj, ∀j ∈ {1, · · · , 30},

where εj ∼ N (0, σ2
j), p ∈ {0.5, 1, 2}, dim(X) ∈ {10, 100}

•Fit a linear model with OLS regression (even when p 6= 1)

Numerical results

Legend: k: kNN-based approach of Bertsimas & Kallus (2019),
E: ER-SAA + OLS, J: J-SAA + OLS, UCB: 99% upper confidence bound

•Advantage of using our data-driven formulations
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•Advantage of the J-SAA formulation with limited data
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