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Motivation
Clustering in Unconstrained Optimization

¢ Consider the unconstrained minimization of

(4 - 21x2 + (x*)13) x% + xy + (-4 + 4y?) y?

-
'

- = =y (%] [X] f - (3]
W Fi i £ i i

(¢

\\m\\&\:\ \\\\\\\\\‘

\m\\ ¢+H ot **o,’




Motivation

Clustering in Unconstrained Optimization

Natural Interval
Extension

Centered
Form

.85

0.8

H
T

.
m

0.

-2 -1 1] 1 2 3 0.3 0.25 0.2 -L15 -0.1 005 o 0.05

(a) Full domain (b) Subset in vicinity of minimum

0.85

0.1

0.8

0.75

07

.65

0.6

55
-2 -1 0 2 3 43 0.25 -0.2 -0.15 0.1 -0.05 0 0.05

(c) Full domain (d) Subset in vicinity of minimum

Wechsung, A., Ph.D. Thesis, MIT, 2014.
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min y* -12x-7y
X,y

st y+2x*-2=0,
xe[0,2], y €][0,3].
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Motivation

min —x-y
X,y

s.t. y<2+42x* —8x>+8x?,
y <4x* —32x° +88x° — 96X + 36,
x€[0,3], y €[0,4].
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Definitions

¢ Width of an interval

Let Z =[z,z ]x---x[z5,2 ] IR".

n’en

The width of Z is given by w(Z) = _r_Tax(in -z").

w(Z)

Bompadre, A. et al., J. Global Optim., 2012.



i
Definitions

¢ Width of an interval

Let Z =[z,z ]x---x[z5,2 ] IR".

n’en

The width of Z is given by w(Z) = _r_Tax(in -z").

¢ Schemes of relaxations

Nonempty, bounded set X < R", functionh: X — R.

5

w(Z)

For each interval Z € IX, define convex relaxation h;” : Z — R, concave relaxation h* : Z — R,

defines a scheme of convex relaxations of h in X.
ZelX

(h")
()

defines a scheme of concave relaxations of h in X.
ZelX

Bompadre, A. et al., J. Global Optim., 2012.

0571

0.5

-0.5

0.5



i
Definitions

¢ Hausdorff metric

Suppose X =[x",x"1,Y =[y",y"] IR are two intervals.

Hausdorff metric q(X,Y) = maxﬂxL - yLHxU —yY ‘}

5
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Definitions

¢ Hausdorff metric

Suppose X =[x",x"1,Y =[y",y"] IR are two intervals.

Hausdorff metric q(X,Y) = max{‘xL — yLHxU —yY ‘}

¢ Inclusion function

h:R" > X — R continuous.

Image of Z < X under h: h(Z):=[h*(2),h"(2) .

H:IX o X — IR is an inclusion function for h on X if
h(Z)cH(Z),VZ e X.

5
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Definitions
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i

¢ Hausdorff metric
Suppose X =[x",x"1,Y =[y",y"] IR are two intervals.
Hausdorff metric q(X,Y) = maxﬂxL —yt| [x¥ =y ‘}

¢ Inclusion function

h:R" > X — R continuous.

Image of Z < X under h: h(Z):=[h*(2),h"(2) .

H:IX o X — IR is an inclusion function for h on X if
h(Z)cH(Z),VZ e X.

— h(2)
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Mir
Hausdorff Convergence

¢ Hausdorff Convergence Order

h:R" > X — R continuous, H inclusion function of h on IX.

H has Hausdorff convergence of order f#>0o0n X if 37 >0s.t. VZ €1X,
a(h(Z),H(2)) <7w(Z)".

> q(h(Z),H(Zy)

q(Xx,Y):= max{‘xL - yLHxU — yu‘}.

Bompadre, A. et al., J. Global Optim., 2012.

5

13



5
i

Mir [
Pointwise Convergence

¢ Pointwise Convergence Order

h:R" > X — R continuous, (h;",h;")|,  scheme of relaxations of h in X.

(h;". h;’)

o has pointwise convergence of order y >0 on X if 37 >0s.t. VZ €IX,

sup|h(x) - hg' (X)| < zw(Z)’,

xeZ

sup|h(x) - hs* (x)| < w(Z)".

xeZ

Bompadre, A. et al., J. Global Optim., 2012.
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Propagation of convergence orders

¢ y-order pointwise convergence of a scheme of relaxations
iImplies (y <)B-order Hausdorff convergence of the scheme

¢ Envelopes and aBB relaxations have second-order pointwise
convergence for €? functions

¢ Natural interval extensions have first-order pointwise
convergence for Lipschitz continuous functions

¢ Centered forms have second-order Hausdorff convergence for
Cc! functions

Bompadre, A. et al., J. Global Optim., 2012. Scholz, D., J. Global Optim., 2012.
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Propagation of convergence orders

Convergence order of factors  Convergence order of operation result

Sum: g(z) = g1(z) + g2(2)
Schemes for g; have 3; # =1 (no order propagation)
Schemes for g; have ~; v 2 min{yy, 72}

Product: g(z) = ¢1(2) - g2(2)
Schemes for g; have [3; £ = 1 (no order propagation)
Schemes for g; have ~; ¥ = min{’}’l, J2, 2}

Composition: g(z) = F' o f(z)

Scheme for F has 8 A > min{fr, Br1}
Inclusion for f has Sy r
Scheme for F' has vyp v = min{yr, v¢}

Scheme for [ has vy

Bound on convergence order of McCormick estimators assuming Lipschitz continuity of the factors

Bompadre, A. et al., J. Global Optim., 2012. Bompadre, A. et al., J. Global Optim., 2013.
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More Definitions

¢ Distance between sets

LetY,Z cR".
The distance between Y and Z is defined as
d(Y,2)=inf|y-z|.

yeyY,
zeZ

5
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More Definitions

¢ Distance between sets

LetY,Z cR".
The distance between Y and Z is defined as
d(Y,2)=inf|y-z|.

yeyY,
zeZ

¢ Convergence and Pointwise Convergence

h:R" > X — R continuous, (h;")

o scheme of convex relaxations of h on X.
€

o has convergence of order #>0on X if37>0s.t. VZ €IX,

().,
inf h(x) —inf he' (x) <tw(Z)”.

(hz)

o has pointwise convergence of order y >0 on X if 37 >0 s.t. VZ €1X,

sup|h(x) —hg" ()| < 7w(Z)’.

xeZ
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Mir . .
Clustering in Unconstrained Global

Optimization

Suppose
e X < R" is an open, convex set
ef: X >R isC?>onX

Du, K. and Kearfott, R.B., J. Global Optim., 1994.

Neumaier, A., Acta Numerica, 2004. Wechsung, A. et al., J. Global Optim., 2014.
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Clustering in Unconstrained Global
Optimization

Suppose

e X < R" is an open, convex set

ef: X >R isC?>onX

e X is the unique unconstrained global minimum of f on X
e V1 (X") is positive definite

Du, K. and Kearfott, R.B., J. Global Optim., 1994.

Neumaier, A., Acta Numerica, 2004. Wechsung, A. et al., J. Global Optim., 2014.

5
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Clustering in Unconstrained Global
Optimization

Suppose

e X < R" is an open, convex set

ef: X >R isC?>onX

e X is the unique unconstrained global minimum of f on X

e V1 (X") is positive definite

e The B&B algorithm finds the upper bound UBD = f (x") early on

¢ The termination tolerance ¢ <1
e The B&B algorithm terminates when UBD -LBD < ¢

Du, K. and Kearfott, R.B., J. Global Optim., 1994.

Neumaier, A., Acta Numerica, 2004. Wechsung, A. et al., J. Global Optim., 2014.

5

21



Clustering in Unconstrained Global
Optimization

5
i
I-

Suppose

e X < R" is an open, convex set

ef: X >R isC?>onX

e X is the unique unconstrained global minimum of f on X

e V1 (X") is positive definite

e The B&B algorithm finds the upper bound UBD = f (x") early on

¢ The termination tolerance ¢ <1
e The B&B algorithm terminates when UBD -LBD < ¢

e The scheme of convex relaxations (f,") has convergence of order # >0 on X

ZelX

Du, K. and Kearfott, R.B., J. Global Optim., 1994.

Neumaier, A., Acta Numerica, 2004. Wechsung, A. et al., J. Global Optim., 2014.
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Optimization

1
Let 6 = (fjﬂ )
T

Partition X into regions A and B such that
A={xeX:f(x)-f(x)>e},
B={xeX:f(x)-f(x)<sl.

Wechsung, A. et al., J. Global Optim., 2014.
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1
Let 6 = (fjﬂ )
T

Partition X into regions A and B such that
A={xeX:f(x)-f(x)>e},
B={xeX:f(x)-f(x)<sl.

If Z € IA,

min f (x) —min f2(x) <tw(Z)”

= min £ ()= min f () - 2w(2)" > £ (<) + & - rw(Z)’
1

Lomin £ () > £(x) - & when 7w(Z)” <26 = W(Z) < 20§

Condition for
fathoming

Wechsung, A. et al., J. Global Optim., 2014.
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Optimization

1
Let o = (fjﬂ :
T
Partition X into regions A and B such that

A={xeX:f(x)-f(x)>e},
B={xeX:f(x)-f(x)<sl.

If Z e IA,
min f (x) —min f2(x) <tw(Z)”
= min £ () > min f () - 2w(Z)’ > £ (<) +2-rw(Z)"
1
~ min f(x)> f(xX)—& when tw(Z)’ <2 <> wW(Z)<2/§5
If Z €1B,

min f (x) —min f2(x) <zw(Z)”
= min £(x) 2 min £ () - tw(Z2)" > £ (X) - rw(Z)”

~ min f(x)> f(x)—e when tw(Z)’ <e <> w(Z)<§

Wechsung, A. et al., J. Global Optim., 2014.

Condition for
fathoming
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Optimization

Let 5:(5]'8. N
T B={xeX:f(x)-f(x)<¢e}
Partition X into regions A and B such that

A={xeX:f(x)-f(x)>el,
B={xeX:f(x)-f(x)<sl.

Q

{x e X :%(x— X)) VAE(X)(x=x) < g}

Wechsung, A. et al., J. Global Optim., 2014.
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1

Let 5:(Ejﬂ . )
T B={xeX:f(x)-f(x)<¢e}
Partition X into regions A and B such that

A={xeX:f(x)-f(x)>el,
B={xeX:f(x)-f(x)<sl.

Q

{x e X :%(x— X)) VAE(X)(x=x) < g}

(4 -2.1x% + x*13) x2 + x 2) y2 0.85
-2 y+(-4+4y’)y

0.8

0.75 |

e,

e,
-
e,

0.65

0.6

Wechsung, A. et al., J. Global Optim., 2014.
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Clustering in Unconstrained Global

Optimization

1
S= (fjﬂ . Bx {x e X :%(x— X )V (X)) (x=x) < g}. = smallest eigenvalue of V> f (x).
T

Cover B using boxes of width ¢ to estimate the extent of clustering.

()

has convergence of order #>0o0n X, i.e., 37 >0s.t. VZ €IX,

ZelX
min f (x) —min f;(x) < ™w(Z)”.

xeZ

5
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1
S= (fjﬂ . B~ {x e X :%(x— X )V (X)) (x=x) < g}. /, =smallest eigenvalue of V> f (x").
T

Cover B using boxes of width ¢ to estimate the extent of clustering.

has convergence of order #>0o0n X, i.e., 37 >0s.t. VZ €IX,

min f (x) —min f;(x) < ™w(Z)”.

xeZ

ZelX

()

Number of boxes required to cover B when 3 = 2 (Wechsung et al., 2014)

Number of boxes

Case
A1
T E ? 1
? < 7T < % 14 2n
I3 :-\I -,‘
2;5 <'£38| 1 + 2n?
2 \ ' ..
3;% < 7T < 48| 1+ gn — 9?2 | %n‘j
18 ‘ — mn—1 — ‘ : —
T{’r 24/ 7T 2/ 707 20| (V2 — 1)/ 7
29
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Formulation
Consider the problem
rpeixn f (x)
s.t. g(x) <0,
h(x) =0,

where X < R" is a nonempty open bounded convex set, f : X >R, g: X ->R™ h: X > R™,

30
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Formulation

Consider the problem
min f (X)

xeX
s.t. g(x) <0,
h(x) =0,
where X < R" is a nonempty open bounded convex set, f : X >R, g: X ->R™ h: X > R™,

Assume

1. f,g, and h are C? on X
2. The constraints define a compact set inside X

31
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Formulation

Consider the problem
min f (X)

xeX
s.t. g(x) <0,
h(x) =0,

where X < R" is a nonempty open bounded convex set, f : X >R, g: X ->R™ h: X > R™,

Assume

1. f,g, and h are C? on X
2. The constraints define a compact set inside X
3. X e X is a global minimum of the above problem, and the B&B algorithm has found

the upper bound UBD = f (x) early on
4. The termination tolerance & <« 1 and the algorithm fathoms node k when UBD —LBD, <&

32
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Convergence Order
Convex relaxation-based scheme

Let(f,") - and (9;") - denote continuous schemes of convex relaxations of
f and g in X, and let (h;", h;%) - denote a continuous scheme of relaxations of
hin X.

33



Convergence Order
ConvexX relaxation-based scheme

Let (f,") and (gs") denote continuous schemes of convex relaxations of
Z Jlzerx Z Jlzerx

f and g in X, and let (h;", h;%)
hinX.

y denote a continuous scheme of relaxations of

Zel

The convex relaxation-based lower bounding scheme is defined by
O(Z) = rpeizn f(x)
s.t. 9;'(x) <0,
hy'(x) <0,
h*(x) >0,
7,(2) =9, (2),
T (Z)={weR™ :hy'(z) <w<hy(z) for some z e Z}.

scheme of lower bounds.

(O],
(Z, (Z))|Zd[X : scheme estimating feasibility of inequality constraints.

(Z: (Z))|de : scheme estimating feasibility of equality constraints.

5

34



5
i
I-

Convergence Order
Convex relaxation-based scheme

Let F(Z):={xeZ:g(x)<0,h(x) =0},
F¥(Z):={xeZ:g5(x)<0,h’(x) <0,hs(x) 2 0}.

The convex relaxation-based lower bounding scheme is said to have convergence
of order # >0 at

1. afeasible pointxe X if 37 >0s.t. VZ € IX withxe Z,

min f(z)— min f%(2) < w(2)”.
min, (2) min 1 (2) (Z)

2. an infeasible pointxe X if 37 >0 s.t. VZ € IX withxe Z,
d(g(z),R™)-d(g;(Z),R™)<7w(Z)”, and
d(h(2),{0})-d(1(2),{0}) <7w(Z)”,

where (12(2))|,_,, is defined as

(@), = ({w eR™ :h%(x) < w < h®(x) for some x e z})

ZelX

35



N |
UIT L
Convergence Order
Convex relaxation-based scheme

Let F(Z):={xeZ:g(x)<0,h(x) =0},
F¥(Z):={xeZ:g5(x)<0,h’(x) <0,hs(x) 2 0}.
The convex relaxation-based lower bounding scheme is said to have convergence
of order # >0 at
_ _ _ _ “The lower bound has to
min f(z)— min % (2) <rw(Z)”. objective value with order

2eF(2) 26 F(Z) at least g”

2. an infeasible pointxe X if 37 >0 s.t. VZ € IX withxe Z,
d(g(z),R™)-d(g;(Z),R™)<7w(Z)”, and
d(h(2),{0})-d(1(2),{0}) <7w(Z)”,

where (12(2))|,_,, is defined as

(@), = ({w eR™ :h%(x) < w < h®(x) for some x e z})

ZelX

36
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Convergence Order
Convex relaxation-based scheme

Let F(Z):={xeZ:g(x)<0,h(x) =0},
F¥(Z):={xeZ:g5(x)<0,h’(x) <0,hs(x) 2 0}.
The convex relaxation-based lower bounding scheme is said to have convergence
of order # >0 at
_ _ _ _ “The lower bound has to
min f(z)— min % (2) <rw(Z)”. objective value with order

2eF(2) 26 F(Z) at least g”

2. an infeasible pointxe X if 37 >0 s.t. VZ € IX withxe Z, “The image of constraint

d(g(z),R™)-d(gs'(2),R™)<7w(Z)”, and relaxations has to converge

— _ 5 (in distance) to the image of
d(h (Z)’{O}) _d(IE(Z)’{O}) =Tw(Z)", the true constraints with

where (12(2))|,_,, is defined as order at least ”

(@), = ({w eR™ :h%(x) < w < h®(x) for some x e z})

ZelX

37
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Conditions for first-order convergence

¢ Sufficient conditions for first-order convergence

Theorem: Suppose

1.f, g j=L1---,m,, and h ,k =1,---,m, are Lipschitz continuous on X.

2. The schemes (f;"), (97 =1,---,m,, and (h%,,h%,)
are at least first-order pointwise convergent on X.

Then, the convex relaxation-based lower bounding scheme is at least first-order convergent on X.

:11”'lmEl

| k
Zelx ' J Zelx '

1

mxm —X 0.8
sit. x3< 0, 0.6
x e[-1,1]. o4

0.2

0

-0.2

0.4

-0.6

-0.8

-1

38
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Conditions for second-order convergence

¢ Sufficient conditions for second-order convergence

Theorem: Suppose
1.f,9,,j=1---,m, andh k=1---,m, are C* on X.
2. The schemes (f;") Jj=L--m, and (h%%,hE,)

CV e LR
Z elX ’(gj’z 1k_11 lmE1
are at least second-order pointwise convergent on X.
Then, the convex relaxation-based lower bounding scheme is at least second-order convergent at

1. x e X for which 3(¢, 4) e RT' xR™ such that (x, x, 1) is a KKT point

ZelX ZelX

2. x e X with g(x) <0 (when m_ =0) 3
3. infeasible x € X 2

min X 0
st. —x*+x+2<0, 4
XE[].,S]. 2+

39
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Clustering in Constrained Global

Optimization
Consider the problem
rpeixn f (x)
s.t. g(x) <0,
h(x) =0,

where X < R" is a nonempty open bounded convex set, f : X >R, g: X ->R™ h: X > R™,

Assume

1. f,g, and h are C? on X
2. The constraints define a compact set inside X
3. X e X is a global minimum of the above problem, and the B&B algorithm has found

the upper bound UBD = f (x) early on
4. The termination tolerance & <« 1 and the algorithm fathoms node k when UBD —LBD, <&

40



Clustering in Constrained Global
Optimization

Suppose the lower bounding scheme
1. has convergence of order 8~ > 0 at feasible points with a prefactor z >0
2. has convergence of order ' >0 at infeasible points with a prefactor ' >0

5

41



Clustering in Constrained Global
Optimization

Suppose the lower bounding scheme
1. has convergence of order 8~ > 0 at feasible points with a prefactor z >0
2. has convergence of order ' >0 at infeasible points with a prefactor ' >0

. has convergence of order A" >0 on X with a prefactor z" >0

1 1 1
f \j 0\ 5f —
Let &', &° be such that (8—|] = (g—f] = (i*jﬂ .
T T T

Suppose (f,")

5
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Clustering in Constrained Global
Optimization

Suppose the lower bounding scheme
1. has convergence of order 8~ > 0 at feasible points with a prefactor z >0
2. has convergence of order ' >0 at infeasible points with a prefactor ' >0

N has convergence of order A" >0 on X with a prefactor z" >0

z Ze
L 1 1
f A 0\ —
Let &', &° be such that (8—|] = (g—f] = (i*jﬂ .
T T T

Partition X into regions X,,---, X; such that

X, ={xe X :max{d ({0}, R™ ).d ({n(}.{0})} > ']

xzz{xEx max{d({g(x)},RT'),d({h(x)} {0})}e(Og]andf(x) f(X)>&°
x3={x max{d ({g()},R™ ),d ({h(x)} {0})} € (0,6 T and f (x) - f () < &° }
4={x max{d ({g()},R™ ),d ({h(x)},{0})} =0 and f (x) - f(x)>g}
x5:{ max{d ({g()},R™ ),d ({h(x)},{0})} = Oandf(x)—f(x*)gg}.

43



Clustering in Constrained Global

5
i

Optimization
Partition X into regions X,,---, X, such that
X, {XE X :max{ ({g(X)} R™).d ({h(X)},{O})} >€f}’ "quite infeasible”
X, = {X X :max{d ({900}, R™ ), d ({9}, {O})} (0. and (- f(x) > } "nearly feasible" but have "poor objective value"
X ={X e X :max{d ({90}, R™),d ({h(0},{0})} € 0,2 Tand f () - f (x) < & } "nearly feasible" and have "good objective value"
X, = {X e X imaX{d ({g00},R™),d ({h(X)}1{0})} Oand f(x)-f(x)> «9}, feasible but "quite suboptimal"
Xg = {X € X :max{d ({g0(0},R™),d ({h(0)}, {0})} Oandf(x)— f(x)< 8} feasible and "nearly optimal"

44
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Clustering in Constrained Global
Optimization

Partition X into regions X,,---, X, such that

Xy = {Xe X max{ (lo()}.R™).d ({h(x)},{O})} >€f}’ "quite infeasible”
X, :{XE X {d ({900} R™).d ({h(x)}, {O})} (0."Tand f (x) - f(x) > &° } "nearly feasible" but have "poor objective value"
X ={XE X :max{d ({g(0}, R™ ),d ({h(0} {0})f € (0,&"Tand f (x)— F () <& } "nearly feasible" and have "good objective value"
X, ={xe X :max{d({g(},R™ ),d ({h()}.{0})} =0 and f (x) - £ (x') > 2, feasible but "quite suboptimal”
Xs ={xe X :max{d ({g(9}, B™ ),d ({n00},{0})} =0 and f (x) - £ (x") < . feasible and "nearly optimal"
> o7 . > > 378}
Unconstrained Equality constrained Inequality constrained

45
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More Definitions

¢ Neighborhood of a point
Letxe X cR". Forany a >0, peN, the set/\/ap(x)z{z e X :||z—x||p <a}

Is called the & —neighborhood of x in X with respect to the p —norm.

¢ Strict local minimum
A point X € F(X) is called a strict local minimum if X is a local minimum
and Ja > 0 such that f (x) > f (X), Yxe N2(X) " F(X) s.t. x #X.

¢ Nonisolated feasible point
A feasible point X € F(X) is said to be nonisolated if Va >0, 3ze N2(X) " F(X) st.z=X.

¢ Set of active inequality constraints

Let x e 7(X) be a feasible point. The set of active inequality constraints at x is given by
A)={je{l--,m}:g;(x)=0}.
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X, {x e X which are "nearly feasible™ and have "good objective value"},
X = {x e X which are feasible and "nearly optimal"}.

5
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3 {x e X which are "nearly feasible™ and have "good objective value"},

X
X = {x e X which are feasible and "nearly optimal"}.

Lemma: Suppose X~ is a nonisolated feasible point and 3 > 0 s.t.
L= inf vi(x)'d >0.

{d:HdH:l,at>o st (X +td)eN (X )NF (X )}
Then 3 € (0,a] s.t. the region AV (X') m X, is overestimated by
X, = {x e N (X): LHX—X*Hl < 25}.

5

48



Mir [
First-Order Clustering in Xx

5
i

X, {x e X which are "nearly feasible™ and have "good objective value"},
X = {x e X which are feasible and "nearly optimal"}.
Lemma: Suppose X~ is a nonisolated feasible point and 3 > 0 s.t.

L= inf Vi (x')Td > 0.

{d:HdH:l,at>o st (X +td)eN (X )NF (X )}
Then 3 € (0,a] s.t. the region AV (X') m X, is overestimated by
X, = {x e N (X): LHX—X*Hl < 25}.

min —X 1 T T T T T T |_f
X 0.8 [ 9 1
S.t. X3 S 0, 06 0~ e neighborhood | _|
Xe [—1, 1] 0.4 - ]

0.2 - T

0

0.2

0.4

-0.6

-0.8

-
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{x e X which are "nearly feasible™ and have "good objective value"},

X3
X = {x e X which are feasible and "nearly optimal"}.

Lemma: Suppose X~ is a nonisolated feasible point and 3 > 0 s.t.
L= inf vi(x)'d >0.

{d:HdH:l,at>o st (X +td)eN (X )NF (X )}
Then 3 € (0,a] s.t. the region AV (X') m X, is overestimated by
X, = {x e N (X): LHX—X*Hl < 25}.

5

1

min . .
X,y y :;f
St X2 — y S O’ - -:'neighborhood

xe[-11],y €[-11].

051

-0.5
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First-Order Clustering in Xx

Lemma: Suppose X~ is a nonisolated feasible point and 3 > 0 s.t.
= inf vi(x)"d >0.

{d:HdH:l,at>o sit. (x*+td)e/\/;(x*)mf(X)}
Then 3a € (0,a] s.t. the region N (X") n X, is overestimated by
X, = {x e N:(X): Hx— X*H1 < 23}.

Theorem: Let 6 = (éjﬁ T :E.

T
1.1f 6 = 2r, thenlet N =1.
2r 2r )
2. If—1>52— forsomeme N withm<n, 2<m<86, then let
m— m

m-1 n _
N = 2{'}+2n[m—ﬂ
i=0 | 3

3. Otherwise, let

N 11 1,1
N=|2r%¢g 71! 2r P e P17  +2n|c P e AL

N is an upper bound on the number of boxes of width & required to cover )25.

5



First-Order Clustering in Xx

Lemma: Suppose X~ is a nonisolated feasible point and 3 > 0 s.t.
L= inf vi(x)"d >0.

{d:HdH:1,3t>0 st (x*+td)e/\/;(x*)mf(X)}

Then 3a € (0,a] s.t. the region N (X") n X, is overestimated by

X :{XGJ\/;(X*): LHX—X*Hl 325}.

Number of boxes required to cover X5 when g* = 1

Case Number of boxes
L
* o 1
=1
[ et < 27 L +2
— < — n
4 B |
21/ 3L
T < '.I'J "‘"_: T 1+2TL2
3L 41 14 5 4.
— << — 14 —n—2n%+ -n*
1 < =7 + Sﬂ‘ n +3n
67 * —1»—1 ~1 ~1
= <7 [27* L7 ([2r° LY 4+ 2n] 7 L 7Y)

5
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Second-Order Clustering In Xs

Lemma: Suppose X~ is a nonisolated feasible point and 3a >0, > 0 s.t.
v (x)d +%dTV2 f(x)d2yd"d, vdel{d:(x"+d)e NZ(X)nF(X)}.
Then 3a € (0, ] s.t. the region A7 (X") m X, is overestimated by

Rs =|xe N2 7= x [} <2].

5
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0.8

06

04r

02

0.2

0.4

0.6

0.8

-0.5

0.5

0.5

0.4

0.3

0.2

0.1 -]

Lemma: Suppose X~ is a nonisolated feasible point and 3a >0, > 0 s.t.

Then 3a € (0, ] s.t. the region A7 (X") m X, is overestimated by

Rs =|xe N2 7= x [} <2].

0.4

v (x)d +%dTV2f(x*)d >yd"d, vde{d:(x +d)e N2 (x)nF(X)}.

s.t. x> —y<0,
xe[-11],y €[-11].

[ objective

-Quadmtic Underestimator

0.5
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Lemma: Suppose X~ is a nonisolated feasible point and 3a >0, > 0 s.t.
v (x)d +%dTV2 f(x)d2yd'd, vdel{d:(x"+d)e NZ(X)nF(X)}.
Then 3a € (0, ] s.t. the region A7 (X") m X, is overestimated by

Rs =|xe N2 7= x [} <2].

1

min y
X,y

0.8 = = = & neighborhood

s.t. x*—y<0, oe |
xe[-11],y e[-11]. SR I

04 P ~

02 P 4

'] 1
) 0 : ]
\ I

02 ' ! :

0.4 s -

0.6

0.8

A . .
-1 0.5 0 0.5 1
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Second-Order Clustering In Xs

LLemma: Suppose X~ is a nonisolated feasible point and 3a >0, » > 0 s.t.
v (x)d +%dTV2f(x*)d >yd"d, vde{d:(X +d)e N2 (x)nF(X)}.
Then 3a € (0, ] s.t. the region N7 (X") m X, is overestimated by

X, ={X€N§(X*)Z}/

*12
X—X H2 323}.

Number of boxes required to cover X; when §* = 2

Case Number of boxes
™ < i 1
- 8
) {”*{2; 14 2n
8 - 8 '
% <7t < % 1+ 2n?
~ 4~ 4
%ci'r**’_{? l+§n—2n2+gn3

5
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First-Order Clustering in X3

X, {x e X which are "nearly feasible" and have "good objective value"},
X

s = {x e X which are feasible and "nearly optimal"}.

Lemma: Suppose X" is a constrained minimizer and 3¢ > 0 and a set D, s.t.
L, = inf Vf(x)'d>0,
deD ND,

L, = inf max{

deD,\D,

max {Vg (x)Td}, rrlgﬁE}{|th(x*)Td|}}>o,

jeAX")
where D, is defined as
={d:[d], =L3t>0st (x"+td) e N3 (X) N FE(X)}.

5
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First-Order Clustering in X3

X, {x e X which are "nearly feasible" and have "good objective value"},
X

s = {x e X which are feasible and "nearly optimal"}.

Lemma: Suppose X" is a constrained minimizer and 3¢ > 0 and a set D, s.t.
L, = inf Vf(x)'d>0,

deD ND,

L, = inf max{max {ng(x*)Td},kEQ%E}{|th(x*)Td|}}>o,

deD\D, jeAX")
where D, is defined as
D, ={d:|d],=13t>0st (X +td) e N3 (x) N FE(X)}.

5

4 —

35

min —x-y
X,y
st y<2+2x* —8x%+8x?, i
y <4x* —32x* +88x* — 96X + 36, 251
x€[0,3], y €[0,4]. o 2}
15

1+

05

0=
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Mir [
First-Order Clustering in X3

s = {x e X which are "nearly feasible™ and have "good objective value"},

X
X ={x e X which are feasible and "nearly optimal"}.

Lemma: Suppose X is a constrained minimizer and 3« > 0 and a set D, s.t.
i *\T
L, _deleID, Vi(x) d>0,
_ s *\T *\T
L, —delzl;lltpl max{jga(lig){ng(x ) d},kemgﬁ}ﬂvm(x ) d|}}>0,
where D, is defined as
D, ={d:]d], =13t >0 st. (x"+td) e N} (X )" F(X)}.

41—

Then 3 € (0, «] s.t. the region
NN Xy {x=(x"+td) e N (xX)nF¢(X):d e D, "D, t >0
IS overestimated by
X!= {x e N (X)L, ||x—x*||1 < 250}

357

3t

251

and the region 5|
N(X) X n{x=(X"+td) e N (X) N FE(X):d e D\ D, t >0} .
IS overestimated by 05

)232:{XGN;(X*):L, ||x—x*||1s25f}. ok
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Lemma: Suppose X~ is a constrained minimizer and 3« >0 and a set D, s.t.
L, = inf Vf(x)'d >0,
deD,ND,

L, = inf max{max {ng(x*)Td},kemgﬁg}ﬂth(x*)Td”}>0,

deD \Dy jeAX")

where D, is defined as
D, ={d:[d[, =13t >0 st (x"+td) e N (X )" FE(X)}.
Then 3a € (0, a] s.t. the region
N ()N Xy {x=(X"+td) e N (xX)nFS(X):d e D, "D, t >0
is overestimated by
X!= {x e N;(X):L, ||x—x*||l < 23"}

and the region
N ()N Xy n{x=(X"+td) e N ()" F°(X):d € D\ D,,t >0
is overestimated by _ _
)232:{XeN;(x*):L, ||x—x*||lszgf}. *
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Lemma: Suppose X~ is a constrained minimizer and 3« >0 and a set D, s.t.
L, = inf Vf(x)'d >0,

deD,ND,

L, = inf max{max {ng(x*)Td},kemgﬁg}ﬂth(x*)Td”}>0,

deD \Dy jeAX")

where D, is defined as
D, ={d:[d[, =13t >0 st (x"+td) e N (X )" FE(X)}.
Then 3a € (0, a] s.t. the region
N ()N Xy {x=(X"+td) e N (xX)nFS(X):d e D, "D, t >0
is overestimated by
X} ={XEJ\/';(X*) 'L, ||x—x*||l 323"}
and the region
N ()N Xy n{x=(X"+td) e N ()" F°(X):d € D\ D,,t >0
is overestimated by
X 2 :{XEN;(X*): L, ||x—x*||lszgf}.

= = = neighborhood

1

Furthermore, suppose X~ is at the center of a box, B,, of width ¢ = (i*jﬂ placed while covering )25.
T

Then the region
NZ(X)N X3m{x:(x*+td)e/\/;(x*)m]-“c(X):d eD, \Dl,t>0}\85

is overestimated by

{x e N2(X): max{d ({g00} . R™),d ({h(x)},{O})} € [%5"9f}} 61
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Lemma: Suppose X~ is a constrained minimizer and 3« >0 and a set D, s.t.
L, = inf Vf(x)'d >0,

deD,ND,

L, = inf max{max {ng(x*)Td},kemgﬁg}ﬂth(x*)Td”}>0,

deD \Dy jeAX")

where D, is defined as
D, ={d:[d[, =13t >0 st (x"+td) e N (X )" FE(X)}.
Then 3a € (0, a] s.t. the region
N ()N Xy {x=(X"+td) e N (xX)nFS(X):d e D, "D, t >0
is overestimated by
X} ={XEN;(X*) 'L, ||x—x*||l 323"}
and the region
N ()N Xy n{x=(X"+td) e N ()" F°(X):d € D\ D,,t >0
is overestimated by
X 2 :{XEN;(X*): L, ||x—x*||lszgf}.

—_—vi

= = = neighborhood

1

Furthermore, suppose X~ is at the center of a box, B,, of width ¢ = (i*jﬂ placed while covering )25.
T

Then the region
NZ(X)N X3m{x:(x*+td)e/\/;(x*)m]-“c(X):d eD, \Dl,t>0}\85

is overestimated by

{x e N2(X): max{d ({g00} . R™),d ({h(x)},{O})} € [%5"9f}} 62



First-Order Clustering in X3

Theorem: Suppose the conditions of the Lemma hold.

1 1 1 1
— 0 F - - f\, 2 f 0
'—et5=5f=i*Jﬁ=g—f ,5|=L'—?/;=L—'|ﬂ g—|(ﬂ),r.=28,rf=28.
T T 4z 4z T L, L,

1.1f 5, 2 2r,, thenlet N, =1.

m| -1 | i=0

. , m; -1 (n "
2. If ?r, >0, zz—r.' for some m, e N withm, <n, 2<m, <6, then letN, = ZZ'(_)+2n{m'3 ‘ﬂ,
[

3. Otherwise, N, = {0.5(7' )/f (¢ )1(/:) L,ﬂ Uo.wI )5 (¢ )1(;) L,ﬁ}zn{o.zs(r' ) (") (7 L

4.1f 6, 22r,, thenlet N, =1.

2r, 2r, _ i
5.0f 1>5f >— forsomem, e N withm, <n, 2<m, <6, thenletN, = 22
m; — f i=0

n

2 1 2

)

1 A E S R 8 E U R 8
6. Otherwise, N, :{Z(Tf ) (e°) /L w Uz(rf)ﬁf (e°) 7 L/ 1+2n{(# ) (e°) L U

N, is an upper bound on the number of boxes of width &, required to cover )232 \ )25 and

N, is an upper bound on the number of boxes of width &, required to cover )231,

|
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Number of boxes required to cover X‘j when 3/ =1

Case Number of boxes
L

f<— 1
=7

L 2L

- <7l < - 1+2n

21 3L

-5 < rf < e 1+ 2n?

30 AL ¢

T < ‘J"r < T 1+ ‘—n —2?{-2 + '—f!-r:
i

Zladd  [art o (2 M anl L)

Number of boxes required to cover X%\X, when g7 =1

Case Number of boxes
< o 1
-4
el e X2 :
1 < T < 1 1+ 2n
\@-'r- I I Vfé-".- I 0.2
T < T = T 1+ 2n
—‘/i <l < —‘/:i - 1+ 13—41'!. —2n? + L—;ns
V6L <! [0.5(77)2L, 21" ([0.5(r7)2L; 2] + 2n[0.25(r7)2 L, 2])
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Second-Order Clustering in X;5

Lemma: Suppose X" is a constrained minimizer and 3 > 0,7, > 0,7, >0, and a set D, s.t.
Vi (x)Td +%dTV2f(x*)d >5dd, VdeD,AD,
max{ max {ng(x*)Td +%dTV2 gj(x*)d},k max }{‘th(x*)Td +%dTV2 hk(x*)d‘}}z y,d'd, vdeD\D,
jeAX") efl, - mg
where D, is defined as
D, ={d:(x" +d) e N2(X) " FE(X)}.
Then 3 € (0, a] s.t. the region
NN X n{x=(X+d) e NZ(X)nFS(X):d e D, D}
is overestimated by
- * * ]2 o
X3 ={XG/\/§(X ):yle—x Hz <2¢ }
and the region
NZ) A Xy {x= (X +d) e N2 ()N FO(X):d e D\ D}
is overestimated by
X2 ={X€NI§(X*)Z]/2 ”x—x*Hz < ng}.
S
Furthermore, suppose X" is at the center of a box, B;, of width & = (i*jﬂ placed while covering )25.
T
Then the region
NZ() A X n{x=(x"+d) e N2(X) N FS(X):d e D\ D, }\B,

is overestimated by

{x e N2(X): max{d ({9} R™),d ({h(x)},{o})} c [%52,5 }}

5
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Revisiting the motivating examples

min y* -12x-7y
X,y

st y+2x*-2=0,
xe[0,2], y €][0,3].

13 &
oo,
. ‘e ©  Natural Interval Extensions
12 - "8 N3 = = = Cluster Model 1
e 8 : o © Centered Form
11+ s = = =Cluster Model 2
o g: ©  Second-Order Method
10 [ NN 0,
-
— ole,
g gl L= I .
o N g‘
= s
T gl et
2 ~ “g
L:_, b
g Be
8
6 ~ B
5|
o 0 g oo
4r o 0 o 0 o0
3 1 1 1 1 1 1 1 o o
-18 -16 -14 -12 -10 -8 -6 -4 -2

log(tolerance)

2.5

1.5

0.5

—h,

— 7 f
V h,

= = = neighborhood
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Revisiting the motivating examples

min —x-y
X,y

s.t. y<2+42x* —8x>+8x?,
y <4x* —32x° +88x° — 96X + 36,
x€[0,3], y €[0,4].

= = =« neighborhood

15 4
o
14 o L
o 3.5
[+]
13+ O
3t
121 °
— 257
21t
0
& 2
-
E 10 ©  Natural Interval Extension
% O Centered Form
e 9 15
B -
1 .
7k
° °© o 0.5
6 |
[+]
5 I 1 D L
-7 -4 -3 -2 1 0 -1 0.5 0

log(tolerance)

0.5

1.5 2 2.5
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HIT
Summary
¢ lllustrated the cluster problem (or lack thereof) in constrained

optimization as motivation for analysis

Proposed a notion of convergence order for convex relaxation-
based lower bounding schemes for constrained problems

Established sufficient conditions for first-order and second-
order convergence of convex relaxation-based lower bounding
schemes to mitigate clustering
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