The Cluster Problem in Constrained Global Optimization

Rohit Kannan and Paul I. Barton
Process Systems Engineering Laboratory Department of Chemical Engineering Massachusetts I nstitute of Technology

September 08, 2016

Clustering in Unconstrained Optimization

- Consider the unconstrained minimization of

Motivation

Clustering in Unconstrained Optimization

Motivation

Clustering in Constrained Optimization

$$
\begin{aligned}
& \min _{x, y} y^{2}-12 x-7 y \\
& \text { s.t. } y+2 x^{4}-2=0, \\
& \quad x \in[0,2], y \in[0,3] .
\end{aligned}
$$

Floudas, C. et al., Springer, 1999.
|『P1

Motivation

Clustering in Constrained Optimization

Motivation

in Constrained Optimization

$$
\begin{aligned}
\min _{x, y} & -x-y \\
\text { s.t. } y & \leq 2+2 x^{4}-8 x^{3}+8 x^{2}, \\
y & \leq 4 x^{4}-32 x^{3}+88 x^{2}-96 x+36, \\
x & \in[0,3], y \in[0,4] .
\end{aligned}
$$

Floudas, C. et al., Springer, 1999.

Motivation

Clustering in Constrained Optimization

Definitions

- Width of an interval

Let $Z=\left[z_{1}^{\mathrm{L}}, z_{1}^{\mathrm{U}}\right] \times \cdots \times\left[z_{n}^{\mathrm{L}}, z_{n}^{\mathrm{U}}\right] \in \mathbb{R}^{n}$.
The width of Z is given by $w(Z)=\max _{i=1, \cdots, n}\left(z_{i}^{\mathrm{U}}-z_{i}^{\mathrm{L}}\right)$.

Definitions

- Width of an interval

Let $Z=\left[z_{1}^{\mathrm{L}}, z_{1}^{\mathrm{U}}\right] \times \cdots \times\left[z_{n}^{\mathrm{L}}, z_{n}^{\mathrm{U}}\right] \in \mathbb{R}^{n}$.
The width of Z is given by $w(Z)=\max _{i=1, \cdots, n}\left(z_{i}^{\mathrm{U}}-z_{i}^{\mathrm{L}}\right)$.

- Schemes of relaxations

Nonempty, bounded set $X \subset \mathbb{R}^{n}$, function $h: X \rightarrow \mathbb{R}$.
For each interval $Z \in \mathbb{I} X$, define convex relaxation $h_{Z}^{\text {cv }}: Z \rightarrow \mathbb{R}$, concave relaxation $h_{Z}^{\text {cc }}: Z \rightarrow \mathbb{R}$.
$\left.\left(h_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ defines a scheme of convex relaxations of h in X. $\left.\left(h_{Z}^{\mathrm{cc}}\right)\right|_{Z \in \mathbb{I} X}$ defines a scheme of concave relaxations of h in X.

Definitions

- Hausdorff metric

Suppose $X=\left[x^{\mathrm{L}}, x^{\mathrm{U}}\right], Y=\left[y^{\mathrm{L}}, y^{\mathrm{U}}\right] \in \mathbb{R} \mathbb{R}$ are two intervals.
Hausdorff metric $q(X, Y):=\max \left\{\left|x^{\mathrm{L}}-y^{\mathrm{L}}\right|,\left|x^{\mathrm{U}}-y^{\mathrm{U}}\right|\right\}$.

Definitions

- Hausdorff metric

Suppose $X=\left[x^{\mathrm{L}}, x^{\mathrm{U}}\right], Y=\left[y^{\mathrm{L}}, y^{\mathrm{U}}\right] \in \mathbb{R} \mathbb{R}$ are two intervals.
Hausdorff metric $q(X, Y):=\max \left\{\left|x^{\mathrm{L}}-y^{\mathrm{L}}\right|,\left|x^{\mathrm{U}}-y^{\mathrm{U}}\right|\right\}$.

- Inclusion function
$h: \mathbb{R}^{n} \supset X \rightarrow \mathbb{R}$ continuous.
Image of $Z \subset X$ under $h: \bar{h}(Z):=\left[h^{\mathrm{L}}(Z), h^{\mathrm{U}}(Z)\right]$.
$H: \mathbb{I} X \supset \mathcal{X} \rightarrow \mathbb{R}$ is an inclusion function for h on \mathcal{X} if

$$
\bar{h}(Z) \subset H(Z), \forall Z \in \mathcal{X} .
$$

Definitions

- Hausdorff metric

Suppose $X=\left[x^{\mathrm{L}}, x^{\mathrm{U}}\right], Y=\left[y^{\mathrm{L}}, y^{\mathrm{U}}\right] \in \mathbb{R} \mathbb{R}$ are two intervals.
Hausdorff metric $q(X, Y):=\max \left\{\left|x^{\mathrm{L}}-y^{\mathrm{L}}\right|,\left|x^{\mathrm{U}}-y^{\mathrm{U}}\right|\right\}$.

- Inclusion function
$h: \mathbb{R}^{n} \supset X \rightarrow \mathbb{R}$ continuous.
Image of $Z \subset X$ under $h: \bar{h}(Z):=\left[h^{\mathrm{L}}(Z), h^{\mathrm{U}}(Z)\right]$.
$H: \mathbb{I} X \supset \mathcal{X} \rightarrow \mathbb{R}$ is an inclusion function for h on \mathcal{X} if

$$
\bar{h}(Z) \subset H(Z), \forall Z \in \mathcal{X} .
$$

Hausdorff Convergence

- Hausdorff Convergence Order
$h: \mathbb{R}^{n} \supset X \rightarrow \mathbb{R}$ continuous, H inclusion function of h on $\mathbb{I} X$.
H has Hausdorff convergence of order $\beta>0$ on X if $\exists \tau>0$ s.t. $\forall Z \in \mathbb{I} X$,

$$
q(\bar{h}(Z), H(Z)) \leq \tau w(Z)^{\beta} .
$$

Pointwise Convergence

- Pointwise Convergence Order
$h: \mathbb{R}^{n} \supset X \rightarrow \mathbb{R}$ continuous, $\left.\left(h_{z}^{\mathrm{cv}}, h_{Z}^{\mathrm{cc}}\right)\right|_{Z \in \mathbb{I} X}$ scheme of relaxations of h in X.
$\left.\left(h_{Z}^{\mathrm{cv}}, h_{Z}^{\mathrm{cc}}\right)\right|_{Z \in \mathbb{I} X}$ has pointwise convergence of order $\gamma>0$ on X if $\exists \tau>0$ s.t. $\forall Z \in \mathbb{I} X$,

$$
\begin{aligned}
& \sup _{x \in Z}\left|h(x)-h_{Z}^{\mathrm{cv}}(x)\right| \leq \tau w(Z)^{\gamma}, \\
& \sup _{x \in Z}\left|h(x)-h_{Z}^{\mathrm{cc}}(x)\right| \leq \tau w(Z)^{\gamma} .
\end{aligned}
$$

Bompadre, A. et al., J. Global Optim., 2012.

Propagation of convergence orders

- γ-order pointwise convergence of a scheme of relaxations implies $(\gamma \leq) \beta$-order Hausdorff convergence of the scheme
- Envelopes and $\alpha B B$ relaxations have second-order pointwise convergence for C^{2} functions
- Natural interval extensions have first-order pointwise convergence for Lipschitz continuous functions
- Centered forms have second-order Hausdorff convergence for C^{1} functions

Propagation of convergence orders

```
Convergence order of factors Convergence order of operation result
```

```
Sum: \(g(\mathbf{z})=g_{1}(\mathbf{z})+g_{2}(\mathbf{z})\)
```

Sum: $g(\mathbf{z})=g_{1}(\mathbf{z})+g_{2}(\mathbf{z})$
Schemes for g_{i} have $\beta_{i} \quad \beta \geq 1$ (no order propagation)
Schemes for g_{i} have $\beta_{i} \quad \beta \geq 1$ (no order propagation)
Schemes for g_{i} have $\gamma_{i} \quad \gamma \geq \min \left\{\gamma_{1}, \gamma_{2}\right\}$
Schemes for g_{i} have $\gamma_{i} \quad \gamma \geq \min \left\{\gamma_{1}, \gamma_{2}\right\}$
Product: $g(\mathbf{z})=g_{1}(\mathbf{z}) \cdot g_{2}(\mathbf{z})$
Product: $g(\mathbf{z})=g_{1}(\mathbf{z}) \cdot g_{2}(\mathbf{z})$
Schemes for g_{i} have $\beta_{i} \quad \beta \geq 1$ (no order propagation)
Schemes for g_{i} have $\beta_{i} \quad \beta \geq 1$ (no order propagation)
Schemes for g_{i} have $\gamma_{i} \quad \gamma \geq \min \left\{\gamma_{1}, \gamma_{2}, 2\right\}$
Schemes for g_{i} have $\gamma_{i} \quad \gamma \geq \min \left\{\gamma_{1}, \gamma_{2}, 2\right\}$
Composition: $g(\mathbf{z})=F \circ f(\mathbf{z})$
Composition: $g(\mathbf{z})=F \circ f(\mathbf{z})$
Scheme for F has $\beta_{F} \quad \beta \geq \min \left\{\beta_{F}, \beta_{f, T}\right\}$
Scheme for F has $\beta_{F} \quad \beta \geq \min \left\{\beta_{F}, \beta_{f, T}\right\}$
Inclusion for f has $\beta_{f, T}$
Inclusion for f has $\beta_{f, T}$
Scheme for F has $\gamma_{F} \quad \gamma \geq \min \left\{\gamma_{F}, \gamma_{f}\right\}$
Scheme for F has $\gamma_{F} \quad \gamma \geq \min \left\{\gamma_{F}, \gamma_{f}\right\}$
Scheme for f has γ_{f}

```
    Scheme for \(f\) has \(\gamma_{f}\)
```

Bound on convergence order of McCormick estimators assuming Lipschitz continuity of the factors

More Definitions

- Distance between sets

Let $Y, Z \subset \mathbb{R}^{n}$.
The distance between Y and Z is defined as

$$
d(Y, Z):=\inf _{\substack{y \in Y \\ z \in \mathcal{Z}}}\|y-z\| .
$$

More Definitions

- Distance between sets

Let $Y, Z \subset \mathbb{R}^{n}$.
The distance between Y and Z is defined as

$$
d(Y, Z):=\inf _{\substack{y \in Y \\ z \in \mathcal{Z}}}\|y-z\| .
$$

- Convergence and Pointwise Convergence
$h: \mathbb{R}^{n} \supset X \rightarrow \mathbb{R}$ continuous, $\left.\left(h_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ scheme of convex relaxations of h on X.
$\left.\left(h_{Z}^{\text {cv }}\right)\right|_{Z \in \mathbb{I} X}$ has convergence of order $\beta>0$ on X if $\exists \tau>0$ s.t. $\forall Z \in \mathbb{I} X$,

$$
\inf _{x \in Z} h(x)-\inf _{x \in Z} h_{Z}^{\mathrm{cv}}(x) \leq \tau w(Z)^{\beta}
$$

$\left.\left(h_{Z}^{\text {cv }}\right)\right|_{Z \in \mathbb{I} X}$ has pointwise convergence of order $\gamma>0$ on X if $\exists \tau>0$ s.t. $\forall Z \in \mathbb{I} X$,

$$
\sup _{x \in Z}\left|h(x)-h_{Z}^{\mathrm{cv}}(x)\right| \leq \tau w(Z)^{\gamma} .
$$

${ }^{\text {Illii }}$ Clustering in Unconstrained Global Optimization

Suppose

- $X \subset \mathbb{R}^{n}$ is an open, convex set
- $f: X \rightarrow \mathbb{R}$ is \mathcal{C}^{2} on X

Clustering in Unconstrained Global Optimization

Suppose

- $X \subset \mathbb{R}^{n}$ is an open, convex set
- $f: X \rightarrow \mathbb{R}$ is \mathcal{C}^{2} on X
- x^{*} is the unique unconstrained global minimum of f on X
- $\nabla^{2} f\left(x^{*}\right)$ is positive definite

Clustering in Unconstrained Global Optimization

Suppose

- $X \subset \mathbb{R}^{n}$ is an open, convex set
- $f: X \rightarrow \mathbb{R}$ is \mathcal{C}^{2} on X
- x^{*} is the unique unconstrained global minimum of f on X
- $\nabla^{2} f\left(x^{*}\right)$ is positive definite
- The B\&B algorithm finds the upper bound $U B D=f\left(x^{*}\right)$ early on
- The termination tolerance $\varepsilon \ll 1$
- The $\mathrm{B} \& \mathrm{~B}$ algorithm terminates when $U B D-L B D \leq \varepsilon$

Clustering in Unconstrained Global Optimization

Suppose

- $X \subset \mathbb{R}^{n}$ is an open, convex set
- $f: X \rightarrow \mathbb{R}$ is \mathcal{C}^{2} on X
- x^{*} is the unique unconstrained global minimum of f on X
- $\nabla^{2} f\left(x^{*}\right)$ is positive definite
- The B\&B algorithm finds the upper bound $U B D=f\left(x^{*}\right)$ early on
- The termination tolerance $\varepsilon \ll 1$
- The $\mathrm{B} \& \mathrm{~B}$ algorithm terminates when $U B D-L B D \leq \varepsilon$
- The scheme of convex relaxations $\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathrm{IX} X}$ has convergence of order $\beta>0$ on X
${ }^{\text {Illii }}$ Clustering in Unconstrained Global Optimization

Let $\delta=\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{\beta}}$.
Partition X into regions A and B such that

$$
\begin{aligned}
& A=\left\{x \in X: f(x)-f\left(x^{*}\right)>\varepsilon\right\}, \\
& B=\left\{x \in X: f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} .
\end{aligned}
$$

Clustering in Unconstrained Global Optimization

Let $\delta=\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{\beta}}$.
Partition X into regions A and B such that

$$
\begin{aligned}
& A=\left\{x \in X: f(x)-f\left(x^{*}\right)>\varepsilon\right\}, \\
& B=\left\{x \in X: f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} .
\end{aligned}
$$

If $Z \in \mathbb{I} A$,

$$
\begin{aligned}
& \min _{x \in Z} f(x)-\min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \leq \tau w(Z)^{\beta} \\
\Rightarrow & \min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \geq \min _{x \in Z} f(x)-\tau w(Z)^{\beta}>f\left(x^{*}\right)+\varepsilon-\tau w(Z)^{\beta} \\
\therefore & \min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \geq f\left(x^{*}\right)-\varepsilon \text { when } \tau w(Z)^{\beta} \leq 2 \varepsilon \Leftrightarrow w(Z) \leq 2^{\frac{1}{\beta}} \delta
\end{aligned}
$$

Clustering in Unconstrained Global Optimization

Let $\delta=\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{\beta}}$.
Partition X into regions A and B such that

$$
\begin{aligned}
& A=\left\{x \in X: f(x)-f\left(x^{*}\right)>\varepsilon\right\}, \\
& B=\left\{x \in X: f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} .
\end{aligned}
$$

If $Z \in \mathbb{I} A$,

$$
\begin{aligned}
& \min _{x \in Z} f(x)-\min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \leq \tau w(Z)^{\beta} \\
\Rightarrow & \min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \geq \min _{x \in Z} f(x)-\tau w(Z)^{\beta}>f\left(x^{*}\right)+\varepsilon-\tau w(Z)^{\beta} \\
\therefore & \min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \geq f\left(x^{*}\right)-\varepsilon \text { when } \tau w(Z)^{\beta} \leq 2 \varepsilon \Leftrightarrow w(Z) \leq 2^{\frac{1}{\beta}} \delta
\end{aligned}
$$

If $Z \in \mathbb{I} B$,

$$
\begin{aligned}
& \min _{x \in Z} f(x)-\min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \leq \tau w(Z)^{\beta} \\
\Rightarrow & \min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \geq \min _{x \in Z} f(x)-\tau w(Z)^{\beta} \geq f\left(x^{*}\right)-\tau w(Z)^{\beta} \\
\therefore & \min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \geq f\left(x^{*}\right)-\varepsilon \text { when } \tau w(Z)^{\beta} \leq \varepsilon \Leftrightarrow w(Z) \leq \delta
\end{aligned}
$$

Condition for fathoming
${ }^{\text {Illiī }}$ Clustering in Unconstrained Global Optimization

Let $\delta=\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{\beta}}$.
Partition X into regions A and B such that

$$
\begin{aligned}
& A=\left\{x \in X: f(x)-f\left(x^{*}\right)>\varepsilon\right\}, \\
& B=\left\{x \in X: f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} .
\end{aligned}
$$

$$
\begin{aligned}
B & =\left\{x \in X: f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} \\
& \approx\left\{x \in X: \frac{1}{2}\left(x-x^{*}\right)^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right) \leq \varepsilon\right\}
\end{aligned}
$$

Clustering in Unconstrained Global Optimization

Let $\delta=\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{\beta}}$.
Partition X into regions A and B such that

$$
\begin{aligned}
& A=\left\{x \in X: f(x)-f\left(x^{*}\right)>\varepsilon\right\}, \\
& B=\left\{x \in X: f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} .
\end{aligned}
$$

$$
\begin{aligned}
B & =\left\{x \in X: f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} \\
& \approx\left\{x \in X: \frac{1}{2}\left(x-x^{*}\right)^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right) \leq \varepsilon\right\}
\end{aligned}
$$

Wechsung, A. et al., J. Global Optim., 2014.

Clustering in Unconstrained Global Optimization

$\delta=\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{\beta}} . B \approx\left\{x \in X: \frac{1}{2}\left(x-x^{*}\right)^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right) \leq \varepsilon\right\} . \lambda_{1}=$ smallest eigenvalue of $\nabla^{2} f\left(x^{*}\right)$.
Cover B using boxes of width δ to estimate the extent of clustering.
$\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ has convergence of order $\beta>0$ on X, i.e., $\exists \tau>0$ s.t. $\forall Z \in \mathbb{I} X$,

$$
\min _{x \in Z} f(x)-\min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \leq \tau w(Z)^{\beta}
$$

Clustering in Unconstrained Global Optimization

$$
\delta=\left(\frac{\varepsilon}{\tau}\right)^{\frac{1}{\beta}} . B \approx\left\{x \in X: \frac{1}{2}\left(x-x^{*}\right)^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right)\left(x-x^{*}\right) \leq \varepsilon\right\} . \lambda_{1}=\text { smallest eigenvalue of } \nabla^{2} f\left(x^{*}\right) \text {. }
$$

Cover B using boxes of width δ to estimate the extent of clustering.
$\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ has convergence of order $\beta>0$ on X, i.e., $\exists \tau>0$ s.t. $\forall Z \in \mathbb{I} X$,

$$
\min _{x \in Z} f(x)-\min _{x \in Z} f_{Z}^{\mathrm{cv}}(x) \leq \tau w(Z)^{\beta}
$$

Number of boxes required to cover B when $\beta=2$ (Wechsung et al., 2014)

Case	Number of boxes
$\tau \leq \frac{\lambda_{1}}{8}$	1
$\frac{\lambda_{1}}{8}<\tau \leq \frac{2 \lambda_{1}}{8}$	$1+2 n$
$\frac{2 \lambda_{1}}{8}<\tau \leq \frac{3 \lambda_{1}}{8}$	$1+2 n^{2}$
$\frac{3 \lambda_{1}}{8}<\tau \leq \frac{4 \lambda_{1}}{8}$	$1+\frac{8}{3} n-2 n^{2}+\frac{4}{3} n^{3}$
\vdots	\vdots
$\frac{18 \lambda_{1}}{8}<\tau$	$\left\lceil 2 \sqrt{\tau \lambda_{1}^{-1}}\right\rceil^{n-1}\left(\left\lceil 2 \sqrt{\tau \lambda_{1}^{-1}}\right\rceil+2 n\left\lceil(\sqrt{2}-1) \sqrt{\tau \lambda_{1}^{-1}}\right\rceil\right)$

Formulation

Consider the problem

$$
\begin{aligned}
& \min _{x \in X} f(x) \\
& \text { s.t. } g(x) \leq 0, \\
& \quad h(x)=0,
\end{aligned}
$$

where $X \subset \mathbb{R}^{n}$ is a nonempty open bounded convex set, $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}^{m_{I}}, h: X \rightarrow \mathbb{R}^{m_{E}}$.

Formulation

Consider the problem

$$
\begin{aligned}
& \min _{x \in X} f(x) \\
& \text { s.t. } g(x) \leq 0, \\
& \quad h(x)=0,
\end{aligned}
$$

where $X \subset \mathbb{R}^{n}$ is a nonempty open bounded convex set, $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}^{m_{I}}, h: X \rightarrow \mathbb{R}^{m_{E}}$.

Assume

1. f, g, and h are \mathcal{C}^{2} on X
2. The constraints define a compact set inside X

Formulation

Consider the problem

$$
\begin{array}{rl}
\min _{x \in X} & f(x) \\
\text { s.t. } g(x) \leq 0, \\
& h(x)=0,
\end{array}
$$

where $X \subset \mathbb{R}^{n}$ is a nonempty open bounded convex set, $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}^{m_{I}}, h: X \rightarrow \mathbb{R}^{m_{E}}$.

Assume

1. f, g, and h are \mathcal{C}^{2} on X
2. The constraints define a compact set inside X
3. $x^{*} \in X$ is a global minimum of the above problem, and the $\mathrm{B} \& \mathrm{~B}$ algorithm has found the upper bound $U B D=f\left(x^{*}\right)$ early on
4. The termination tolerance $\varepsilon \ll 1$ and the algorithm fathoms node k when $U B D-L B D_{k} \leq \varepsilon$

Convergence Order Convex relaxation-based scheme

Let $\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ and $\left.\left(g_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ denote continuous schemes of convex relaxations of f and g in X, and let $\left.\left(h_{Z}^{\mathrm{cv}}, h_{Z}^{\mathrm{cc}}\right)\right|_{Z \in \mathbb{I} X}$ denote a continuous scheme of relaxations of h in X.

Convergence Order

 Convex relaxation-based schemeLet $\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ and $\left.\left(g_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ denote continuous schemes of convex relaxations of f and g in X, and let $\left.\left(h_{Z}^{\mathrm{cv}}, h_{Z}^{\mathrm{cc}}\right)\right|_{Z \in \mathbb{I} X}$ denote a continuous scheme of relaxations of h in X.

The convex relaxation-based lower bounding scheme is defined by

$$
\begin{aligned}
& \mathcal{O}(Z):= \min _{x \in Z} \\
& \text { s.t. } g_{Z}^{\mathrm{cv}}(x) \\
& h_{Z}^{\mathrm{cv}}(x) \leq 0, \\
& h_{Z}^{\mathrm{cc}}(x) \geq 0, \\
& \mathcal{I}_{I}(Z):= \bar{g}_{Z}^{\mathrm{cv}}(Z), \\
& \mathcal{I}_{E}(Z):=\left\{w \in \mathbb{R}^{m_{E}}: h_{Z}^{c v}(z) \leq w \leq h_{Z}^{c c}(z) \text { for some } z \in Z\right\} .
\end{aligned}
$$

$\left.(\mathcal{O}(Z))\right|_{Z \in \mathbb{I} X}$: scheme of lower bounds.
$\left.\left(\mathcal{I}_{I}(Z)\right)\right|_{Z \in \mathbb{I} X}$: scheme estimating feasibility of inequality constraints.
$\left.\left(\mathcal{I}_{E}(Z)\right)\right|_{Z \in \mathbb{I} X}$: scheme estimating feasibility of equality constraints.

Convergence Order Convex relaxation-based scheme

Let $\mathcal{F}(Z):=\{x \in Z: g(x) \leq 0, h(x)=0\}$,

$$
\mathcal{F}^{\mathrm{cv}}(Z):=\left\{x \in Z: g_{Z}^{\mathrm{cv}}(x) \leq 0, h_{Z}^{\mathrm{cv}}(x) \leq 0, h_{Z}^{\mathrm{cc}}(x) \geq 0\right\} .
$$

The convex relaxation-based lower bounding scheme is said to have convergence of order $\beta>0$ at

1. a feasible point $x \in X$ if $\exists \tau \geq 0$ s.t. $\forall Z \in \mathbb{L} X$ with $x \in Z$,

$$
\min _{z \in \mathcal{F}(Z)} f(z)-\min _{z \in \mathcal{F}^{\mathrm{c}}(Z)} f_{Z}^{\mathrm{cv}}(z) \leq \tau w(Z)^{\beta}
$$

2. an infeasible point $x \in X$ if $\exists \bar{\tau} \geq 0$ s.t. $\forall Z \in \mathbb{I} X$ with $x \in Z$,

$$
\begin{aligned}
& d\left(\bar{g}(Z), \mathbb{R}_{-}^{m_{I}}\right)-d\left(\bar{g}_{Z}^{\mathrm{cv}}(Z), \mathbb{R}_{-}^{m_{I}}\right) \leq \bar{\tau} w(Z)^{\beta}, \text { and } \\
& d(\bar{h}(Z),\{0\})-d\left(I_{E}(Z),\{0\}\right) \leq \bar{\tau} w(Z)^{\beta},
\end{aligned}
$$

where $\left.\left(I_{E}(Z)\right)\right|_{Z \in \mathbb{I X}}$ is defined as

$$
\left.\left(I_{E}(Z)\right)\right|_{Z \in \mathbb{I} X}:=\left(\left\{w \in \mathbb{R}^{m_{E}}: h_{Z}^{\mathrm{cv}}(x) \leq w \leq h_{Z}^{\mathrm{cc}}(x) \text { for some } x \in Z\right\}\right)_{Z \in \mathbb{X}}
$$

Convergence Order Convex relaxation-based scheme

Let $\mathcal{F}(Z):=\{x \in Z: g(x) \leq 0, h(x)=0\}$,

$$
\mathcal{F}^{\mathrm{cv}}(Z):=\left\{x \in Z: g_{Z}^{\mathrm{cv}}(x) \leq 0, h_{Z}^{\mathrm{cv}}(x) \leq 0, h_{Z}^{\mathrm{cc}}(x) \geq 0\right\} .
$$

The convex relaxation-based lower bounding scheme is said to have convergence of order $\beta>0$ at

1. a feasible point $x \in X$ if $\exists \tau \geq 0$ s.t. $\forall Z \in \mathbb{L} X$ with $x \in Z$,

$$
\min _{z \in \mathcal{F}(Z)} f(z)-\min _{z \in \mathcal{F}^{\mathrm{c}}(Z)} f_{Z}^{\mathrm{cv}}(z) \leq \tau w(Z)^{\beta}
$$

"The lower bound has to converge to the minimum objective value with order at least $\beta^{\prime \prime}$
2. an infeasible point $x \in X$ if $\exists \bar{\tau} \geq 0$ s.t. $\forall Z \in \mathbb{I} X$ with $x \in Z$,

$$
\begin{aligned}
& d\left(\bar{g}(Z), \mathbb{R}_{-}^{m_{I}}\right)-d\left(\bar{g}_{Z}^{\mathrm{cv}}(Z), \mathbb{R}_{-}^{m_{I}}\right) \leq \bar{\tau} w(Z)^{\beta}, \text { and } \\
& d(\bar{h}(Z),\{0\})-d\left(I_{E}(Z),\{0\}\right) \leq \bar{\tau} w(Z)^{\beta},
\end{aligned}
$$

where $\left.\left(I_{E}(Z)\right)\right|_{Z \in \mathbb{I} X}$ is defined as

$$
\left.\left(I_{E}(Z)\right)\right|_{Z \in \mathbb{X} X}:=\left(\left\{w \in \mathbb{R}^{m_{E}}: h_{Z}^{\mathrm{cv}}(x) \leq w \leq h_{Z}^{\mathrm{cc}}(x) \text { for some } x \in Z\right\}\right)_{Z \in \mathbb{X}}
$$

Convergence Order Convex relaxation-based scheme

Let $\mathcal{F}(Z):=\{x \in Z: g(x) \leq 0, h(x)=0\}$,

$$
\mathcal{F}^{\mathrm{cv}}(Z):=\left\{x \in Z: g_{Z}^{\mathrm{cv}}(x) \leq 0, h_{Z}^{\mathrm{cv}}(x) \leq 0, h_{Z}^{\mathrm{cc}}(x) \geq 0\right\} .
$$

The convex relaxation-based lower bounding scheme is said to have convergence of order $\beta>0$ at

1. a feasible point $x \in X$ if $\exists \tau \geq 0$ s.t. $\forall Z \in \mathbb{L} X$ with $x \in Z$,

$$
\min _{z \in \mathcal{F}(Z)} f(z)-\min _{z \in \mathcal{F}^{\mathrm{F}}(Z)} f_{Z}^{\mathrm{cv}}(z) \leq \tau w(Z)^{\beta}
$$

2. an infeasible point $x \in X$ if $\exists \bar{\tau} \geq 0$ s.t. $\forall Z \in \mathbb{I} X$ with $x \in Z$,

$$
\begin{aligned}
& d\left(\bar{g}(Z), \mathbb{R}_{-}^{m_{I}}\right)-d\left(\bar{g}_{Z}^{\mathrm{cv}}(Z), \mathbb{R}_{-}^{m_{I}}\right) \leq \bar{\tau} w(Z)^{\beta}, \text { and } \\
& d(\bar{h}(Z),\{0\})-d\left(I_{E}(Z),\{0\}\right) \leq \bar{\tau} w(Z)^{\beta},
\end{aligned}
$$

where $\left.\left(I_{E}(Z)\right)\right|_{Z \in \mathbb{I} X}$ is defined as
"The lower bound has to converge to the minimum objective value with order at least $\beta^{\prime \prime}$
"The image of constraint relaxations has to converge (in distance) to the image of the true constraints with order at least $\beta^{\prime \prime}$

$$
\left.\left(I_{E}(Z)\right)\right|_{Z \in \mathbb{I} X}:=\left(\left\{w \in \mathbb{R}^{m_{E}}: h_{Z}^{\mathrm{cv}}(x) \leq w \leq h_{Z}^{\mathrm{cc}}(x) \text { for some } x \in Z\right\}\right)_{Z \in \mathbb{I} X}
$$

Conditions for first-order convergence

- Sufficient conditions for first-order convergence

Theorem: Suppose

1. $f, g_{j}, j=1, \cdots, m_{I}$, and $h_{k}, k=1, \cdots, m_{E}$, are Lipschitz continuous on X.
2. The schemes $\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X},\left.\left(g_{j, Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}, j=1, \cdots, m_{I}$, and $\left.\left(h_{k, Z}^{\mathrm{cv}}, h_{k, Z}^{\mathrm{cc}}\right)\right|_{Z \in \mathbb{I} X}, k=1, \cdots, m_{E}$, are at least first-order pointwise convergent on X.
Then, the convex relaxation-based lower bounding scheme is at least first-order convergent on X.

$$
\begin{aligned}
\min _{x} & -x \\
\text { s.t. } & x^{3} \leq 0 \\
& x \in[-1,1]
\end{aligned}
$$

Conditions for second-order convergence

- Sufficient conditions for second-order convergence

Theorem: Suppose

1. $f, g_{j}, j=1, \cdots, m_{I}$, and $h_{k}, k=1, \cdots, m_{E}$, are \mathcal{C}^{2} on X.
2. The schemes $\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X},\left.\left(g_{j, Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{X}}, j=1, \cdots, m_{I}$, and $\left.\left(h_{k, Z}^{\mathrm{cv}}, h_{k, Z}^{\mathrm{cc}}\right)\right|_{Z \in \mathbb{I} X}, k=1, \cdots, m_{E}$, are at least second-order pointwise convergent on X.
Then, the convex relaxation-based lower bounding scheme is at least second-order convergent at 1. $x \in X$ for which $\exists(\mu, \lambda) \in \mathbb{R}_{+}^{m_{I}} \times \mathbb{R}^{m_{E}}$ such that (x, μ, λ) is a KKT point 2. $x \in X$ with $g(x)<0$ (when $m_{E}=0$)
3. infeasible $x \in X$
$\min _{x} x$

$$
\begin{array}{ll}
\text { s.t. } & -x^{2}+x+2 \leq 0, \\
& x \in[1,3] .
\end{array}
$$

Clustering in Constrained Global Optimization

Consider the problem

$$
\begin{aligned}
& \min _{x \in X} f(x) \\
& \text { s.t. } g(x) \leq 0, \\
& \quad h(x)=0,
\end{aligned}
$$

where $X \subset \mathbb{R}^{n}$ is a nonempty open bounded convex set, $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}^{m_{I}}, h: X \rightarrow \mathbb{R}^{m_{E}}$.

Assume

1. f, g, and h are \mathcal{C}^{2} on X
2. The constraints define a compact set inside X
3. $x^{*} \in X$ is a global minimum of the above problem, and the B\&B algorithm has found the upper bound $U B D=f\left(x^{*}\right)$ early on
4. The termination tolerance $\varepsilon \ll 1$ and the algorithm fathoms node k when $U B D-L B D_{k} \leq \varepsilon$

Clustering in Constrained Global Optimization

Suppose the lower bounding scheme

1. has convergence of order $\beta^{*}>0$ at feasible points with a prefactor $\tau^{*}>0$
2. has convergence of order $\beta^{\mathrm{I}}>0$ at infeasible points with a prefactor $\tau^{\mathrm{I}}>0$

Clustering in Constrained Global Optimization

Suppose the lower bounding scheme

1. has convergence of order $\beta^{*}>0$ at feasible points with a prefactor $\tau^{*}>0$
2. has convergence of order $\beta^{\mathrm{I}}>0$ at infeasible points with a prefactor $\tau^{\mathrm{I}}>0$

Suppose $\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{z \in \mathbb{I} X}$ has convergence of order $\beta^{\mathrm{f}}>0$ on X with a prefactor $\tau^{\mathrm{f}}>0$
Let $\varepsilon^{f}, \varepsilon^{o}$ be such that $\left(\frac{\varepsilon^{\mathrm{f}}}{\tau^{\mathrm{I}}}\right)^{\frac{1}{\beta^{\mathrm{I}}}}=\left(\frac{\varepsilon^{\mathrm{o}}}{\tau^{\mathrm{f}}}\right)^{\frac{1}{\beta^{\mathrm{f}}}}=\left(\frac{\varepsilon}{\tau^{*}}\right)^{\frac{1}{\beta^{*}}}$.

Clustering in Constrained Global Optimization

Suppose the lower bounding scheme

1. has convergence of order $\beta^{*}>0$ at feasible points with a prefactor $\tau^{*}>0$
2. has convergence of order $\beta^{\mathrm{I}}>0$ at infeasible points with a prefactor $\tau^{\mathrm{I}}>0$

Suppose $\left.\left(f_{Z}^{\mathrm{cv}}\right)\right|_{Z \in \mathbb{I} X}$ has convergence of order $\beta^{\mathrm{f}}>0$ on X with a prefactor $\tau^{\mathrm{f}}>0$
Let $\varepsilon^{f}, \varepsilon^{o}$ be such that $\left(\frac{\varepsilon^{f}}{\tau^{\mathrm{f}}}\right)^{\frac{1}{\beta^{\mathrm{I}}}}=\left(\frac{\varepsilon^{0}}{\tau^{\mathrm{f}}}\right)^{\frac{1}{\beta^{\mathrm{f}}}}=\left(\frac{\varepsilon}{\tau^{*}}\right)^{\frac{1}{\beta^{*}}}$.
Partition X into regions X_{1}, \cdots, X_{5} such that

$$
\begin{aligned}
& X_{1}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}>\varepsilon^{\mathrm{f}}\right\}, \\
& X_{2}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left(0, \varepsilon^{\mathrm{f}}\right] \text { and } f(x)-f\left(x^{*}\right)>\varepsilon^{\circ}\right\}, \\
& X_{3}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left(0, \varepsilon^{\mathrm{f}}\right] \text { and } f(x)-f\left(x^{*}\right) \leq \varepsilon^{\circ}\right\}, \\
& X_{4}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}=0 \text { and } f(x)-f\left(x^{*}\right)>\varepsilon\right\}, \\
& X_{5}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}=0 \text { and } f(x)-f\left(x^{*}\right) \leq \varepsilon\right\} .
\end{aligned}
$$

Clustering in Constrained Global Optimization

Partition X into regions X_{1}, \cdots, X_{5} such that
$X_{1}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}>\varepsilon^{\mathrm{f}}\right\}$,
$X_{2}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left(0, \varepsilon^{\mathrm{f}}\right]\right.$ and $\left.f(x)-f\left(x^{*}\right)>\varepsilon^{\mathrm{o}}\right\}$, $X_{3}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left(0, \varepsilon^{\mathrm{f}}\right]\right.$ and $\left.f(x)-f\left(x^{*}\right) \leq \varepsilon^{\mathrm{o}}\right\}$, $X_{4}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}=0\right.$ and $\left.f(x)-f\left(x^{*}\right)>\varepsilon\right\}$, $X_{5}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}=0\right.$ and $\left.f(x)-f\left(x^{*}\right) \leq \varepsilon\right\}$.
"quite infeasible"
"nearly feasible" but have "poor objective value"
"nearly feasible" and have "good objective value" feasible but "quite suboptimal"
feasible and "nearly optimal"

Clustering in Constrained Global Optimization

Partition X into regions X_{1}, \cdots, X_{5} such that
$X_{1}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}>\varepsilon^{\mathrm{f}}\right\}$,
$X_{2}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left(0, \varepsilon^{\mathrm{f}}\right]\right.$ and $\left.f(x)-f\left(x^{*}\right)>\varepsilon^{0}\right\}$, $X_{3}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left(0, \varepsilon^{\mathrm{f}}\right]\right.$ and $\left.f(x)-f\left(x^{*}\right) \leq \varepsilon^{0}\right\}$, $X_{4}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}=0\right.$ and $\left.f(x)-f\left(x^{*}\right)>\varepsilon\right\}$, $X_{5}=\left\{x \in X: \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\}=0\right.$ and $\left.f(x)-f\left(x^{*}\right) \leq \varepsilon\right\}$.
"quite infeasible"
"nearly feasible" but have "poor objective value"
"nearly feasible" and have "good objective value" feasible but "quite suboptimal"
feasible and "nearly optimal"

Unconstrained

Equality constrained

Inequality constrained

More Definitions

- Neighborhood of a point

Let $x \in X \subset \mathbb{R}^{n}$. For any $\alpha>0, p \in \mathbb{N}$, the set $\mathcal{N}_{\alpha}^{p}(x)=\left\{z \in X:\|z-x\|_{p}<\alpha\right\}$
is called the α-neighborhood of x in X with respect to the p-norm.

- Strict local minimum

A point $\bar{x} \in \mathcal{F}(X)$ is called a strict local minimum if \bar{x} is a local minimum and $\exists \alpha>0$ such that $f(x)>f(\bar{x}), \forall x \in \mathcal{N}_{\alpha}^{2}(\bar{x}) \cap \mathcal{F}(X)$ s.t. $x \neq \bar{x}$.

- Nonisolated feasible point

A feasible point $\bar{x} \in \mathcal{F}(X)$ is said to be nonisolated if $\forall \alpha>0, \exists z \in \mathcal{N}_{\alpha}^{2}(\bar{x}) \cap \mathcal{F}(X)$ s.t. $z \neq \bar{x}$.

- Set of active inequality constraints

Let $x \in \mathcal{F}(X)$ be a feasible point. The set of active inequality constraints at x is given by

$$
\mathcal{A}(x)=\left\{j \in\left\{1, \cdots, m_{I}\right\}: g_{j}(x)=0\right\} .
$$

First-Order Clustering in X_{5}

$X_{3}=\{x \in X$ which are "nearly feasible" and have "good objective value" $\}$,
$X_{5}=\{x \in X$ which are feasible and "nearly optimal" $\}$.

First-Order Clustering in X_{5}

$X_{3}=\{x \in X$ which are "nearly feasible" and have "good objective value" $\}$,
$X_{5}=\{x \in X$ which are feasible and "nearly optimal" $\}$.
Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0$ s.t.

$$
\left.L=\inf _{\{d:\|d\|=1, \exists \gg 0} \text { s.t. }\left(x^{*}+d d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}(x)\right\} \in\left(x^{*}\right)^{\mathrm{T}} d>0 .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon\right\} .
$$

First-Order Clustering in X_{5}

$X_{3}=\{x \in X$ which are "nearly feasible" and have "good objective value" $\}$, $X_{5}=\{x \in X$ which are feasible and "nearly optimal" $\}$.

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0$ s.t.

$$
\left.L=\inf _{\{d:\|d\|=1, \exists t>0} \operatorname{s.t}\left(x^{*}+d d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}(X)\right\} \in\left(x^{*}\right)^{\mathrm{T}} d>0 .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon\right\} .
$$

$\min _{x}-x$
s.t. $x^{3} \leq 0$, $x \in[-1,1]$.

First-Order Clustering in X_{5}

$X_{3}=\{x \in X$ which are "nearly feasible" and have "good objective value" $\}$, $X_{5}=\{x \in X$ which are feasible and "nearly optimal" $\}$.

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0$ s.t.

$$
\left.L=\inf _{\{d:\|d\|=1, \exists t>0} \text { s.t. }\left(x^{*}+d d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}(x)\right\} \in\left(x^{*}\right)^{\mathrm{T}} d>0
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon\right\} .
$$

$\min _{x, y} y$
s.t. $x^{2}-y \leq 0$, $x \in[-1,1], y \in[-1,1]$.

First-Order Clustering in X_{5}

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0$ s.t.

$$
L=\inf _{\left\{d:|d|=1, \overrightarrow{\exists t>0} \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}(x)\right\}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0 .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon\right\} .
$$

Theorem: Let $\delta=\left(\frac{\varepsilon}{\tau^{*}}\right)^{\frac{1}{\beta^{*}}}, r=\frac{2 \varepsilon}{L}$.

1. If $\delta \geq 2 r$, then let $N=1$.
2. If $\frac{2 r}{m-1}>\delta \geq \frac{2 r}{m}$ for some $m \in \mathbb{N}$ with $m \leq n, 2 \leq m \leq 6$, then let

$$
N=\sum_{i=0}^{m-1} 2^{i}\binom{n}{i}+2 n\left\lceil\frac{m-3}{3}\right\rceil .
$$

3. Otherwise, let

$$
N=\left\lceil 2 \tau^{\frac{1}{\beta^{*}}} \varepsilon^{1-\frac{1}{\beta^{*}}} L^{-1}\right\rceil^{n-1}\left(\left[2 \tau^{\frac{1}{\beta^{*}}} \varepsilon^{1-\frac{1}{\beta^{*}}} L^{-1}\right]+2 n\left[\tau^{* \frac{1}{\beta^{*}}} \varepsilon^{1-\frac{1}{\beta^{*}}} L^{-1}\right]\right)
$$

N is an upper bound on the number of boxes of width δ required to cover \hat{X}_{5}.

First-Order Clustering in X_{5}

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0$ s.t.

$$
L=\inf _{\left\{d:|d|=1, \overrightarrow{\exists t>0} \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}(x)\right\}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0 .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon\right\} .
$$

Number of boxes required to cover \hat{X}_{5} when $\beta^{*}=1$

Case	Number of boxes
$\tau^{*} \leq \frac{L}{4}$	1
$\frac{L}{4}<\tau^{*} \leq \frac{2 L}{4}$	$1+2 n$
$\frac{2 L}{4}<\tau^{*} \leq \frac{3 L}{4}$	$1+2 n^{2}$
$\frac{3 L}{4}<\tau^{*} \leq \frac{4 L}{4}$	$1+\frac{14}{3} n-2 n^{2}+\frac{4}{3} n^{3}$
\vdots	\vdots
$\frac{6 L}{4}<\tau^{*}$	$\left\lceil 2 \tau^{*} L^{-1}\right\rceil^{n-1}\left(\left\lceil 2 \tau^{*} L^{-1}\right\rceil+2 n\left\lceil\tau^{*} L^{-1}\right\rceil\right)$

Second-Order Clustering in X_{5}

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0, \gamma>0$ s.t.

$$
\nabla f\left(x^{*}\right)^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right) d \geq \gamma d^{\mathrm{T}} d, \quad \forall d \in\left\{d:\left(x^{*}+d\right) \in \mathcal{N}_{\alpha}^{2}\left(x^{*}\right) \cap \mathcal{F}(X)\right\}
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right): \gamma\left\|x-x^{*}\right\|_{2}^{2} \leq 2 \varepsilon\right\} .
$$

|『F|

Second-Order Clustering in X_{5}

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0, \gamma>0$ s.t.

$$
\nabla f\left(x^{*}\right)^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right) d \geq \gamma d^{\mathrm{T}} d, \quad \forall d \in\left\{d:\left(x^{*}+d\right) \in \mathcal{N}_{\alpha}^{2}\left(x^{*}\right) \cap \mathcal{F}(X)\right\}
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right): \gamma\left\|x-x^{*}\right\|_{2}^{2} \leq 2 \varepsilon\right\} . \quad \min _{x, y} y
$$

$$
\begin{aligned}
& \text { s.t. } x^{2}-y \leq 0, \\
& \\
& \quad x \in[-1,1], y \in[-1,1] .
\end{aligned}
$$

Second-Order Clustering in X_{5}

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0, \gamma>0$ s.t.

$$
\nabla f\left(x^{*}\right)^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right) d \geq \gamma d^{\mathrm{T}} d, \quad \forall d \in\left\{d:\left(x^{*}+d\right) \in \mathcal{N}_{\alpha}^{2}\left(x^{*}\right) \cap \mathcal{F}(X)\right\}
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right): \gamma\left\|x-x^{*}\right\|_{2}^{2} \leq 2 \varepsilon\right\} .
$$

$\min _{x, y} y$
s.t. $x^{4}-y \leq 0$,
$x \in[-1,1], y \in[-1,1]$.

Second-Order Clustering in X_{5}

Lemma: Suppose x^{*} is a nonisolated feasible point and $\exists \alpha>0, \gamma>0$ s.t.

$$
\nabla f\left(x^{*}\right)^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right) d \geq \gamma d^{\mathrm{T}} d, \quad \forall d \in\left\{d:\left(x^{*}+d\right) \in \mathcal{N}_{\alpha}^{2}\left(x^{*}\right) \cap \mathcal{F}(X)\right\}
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region $\mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap X_{5}$ is overestimated by

$$
\hat{X}_{5}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right): \gamma\left\|x-x^{*}\right\|_{2}^{2} \leq 2 \varepsilon\right\} .
$$

Number of boxes required to cover \hat{X}_{5} when $\beta^{*}=2$

Case	Number of boxes
$\tau^{*} \leq \frac{\gamma}{8}$	1
$\frac{\gamma}{8}<\tau^{*} \leq \frac{2 \gamma}{8}$	$1+2 n$
$\frac{2 \gamma}{8}<\tau^{*} \leq \frac{3 \gamma}{8}$	$1+2 n^{2}$
$\frac{3 \gamma}{8}<\tau^{*} \leq \frac{4 \gamma}{8}$	$1+\frac{8}{3} n-2 n^{2}+\frac{4}{3} n^{3}$
\vdots	\vdots
$\frac{18 \gamma}{8}<\tau^{*}$	$\left\lceil 2 \sqrt{\tau^{*} \gamma^{-1}}\right\rceil^{n-1}\left(\left\lceil 2 \sqrt{\tau^{*} \gamma^{-1}}\right\rceil+2 n\left\lceil(\sqrt{2}-1) \sqrt{\tau^{*} \gamma^{-1}}\right\rceil\right)$

First-Order Clustering in X_{3}

$X_{3}=\{x \in X$ which are "nearly feasible" and have "good objective value" $\}$, $X_{5}=\{x \in X$ which are feasible and "nearly optimal" $\}$.

Lemma: Suppose x^{*} is a constrained minimizer and $\exists \alpha>0$ and a set \mathcal{D}_{1} s.t.

$$
\begin{aligned}
& L_{f}=\inf _{d \in \mathcal{D}_{1} D_{I}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0, \\
& L_{I}=\inf _{d \in \mathcal{D}_{I} D_{1}} \max \left\{\max _{j \in \mathcal{A}\left(x^{*}\right)}\left\{\nabla g_{j}\left(x^{*}\right)^{\mathrm{T}} d\right\}, \max _{k \in\left\{1_{1}, \cdots, m_{E}\right\}}\left\{\left|\nabla h_{k}\left(x^{*}\right)^{\mathrm{T}} d\right|\right\}\right\}>0,
\end{aligned}
$$

where \mathcal{D}_{I} is defined as

$$
\mathcal{D}_{I}=\left\{d:\|d\|_{1}=1, \exists t>0 \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X)\right\} .
$$

First-Order Clustering in X_{3}

$X_{3}=\{x \in X$ which are "nearly feasible" and have "good objective value" $\}$, $X_{5}=\{x \in X$ which are feasible and "nearly optimal" $\}$.

Lemma: Suppose x^{*} is a constrained minimizer and $\exists \alpha>0$ and a set \mathcal{D}_{1} s.t.

$$
\begin{aligned}
& L_{f}=\inf _{d \in \mathcal{D}_{1}, D_{1}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0, \\
& L_{I}=\inf _{d \in \mathcal{D}_{I} \mathcal{D}_{1}} \max \left\{\max _{j \in \mathcal{A}\left(x^{*}\right)}\left\{\nabla g_{j}\left(x^{*}\right)^{\mathrm{T}} d\right\}, \max _{k \in\left\{\left\{1, \cdots, \bar{D}_{E}\right\}\right.}\left\{\left|\nabla h_{k}\left(x^{*}\right)^{\mathrm{T}} d\right|\right\}\right\}>0,
\end{aligned}
$$

where \mathcal{D}_{I} is defined as

$$
\mathcal{D}_{I}=\left\{d:\|d\|_{1}=1, \exists t>0 \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X)\right\} .
$$

$$
\begin{aligned}
\min _{x, y} & -x-y \\
\text { s.t. } y & \leq 2+2 x^{4}-8 x^{3}+8 x^{2}, \\
y & \leq 4 x^{4}-32 x^{3}+88 x^{2}-96 x+36, \\
x & \in[0,3], y \in[0,4] .
\end{aligned}
$$

First-Order Clustering in X_{3}

$X_{3}=\{x \in X$ which are "nearly feasible" and have "good objective value" $\}$, $X_{5}=\{x \in X$ which are feasible and "nearly optimal" $\}$.

Lemma: Suppose x^{*} is a constrained minimizer and $\exists \alpha>0$ and a set \mathcal{D}_{1} s.t.

$$
\begin{aligned}
& L_{f}=\inf _{d \in \mathcal{D}_{1} \mathcal{D}_{l}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0, \\
& L_{I}=\inf _{d \in \mathcal{D}_{I} \mathcal{D}_{1}} \max \left\{\max _{j \in \mathcal{A}\left(x^{*}\right)}\left\{\nabla g_{j}\left(x^{*}\right)^{\mathrm{T}} d\right\}, \max _{k \in\left\{1, \cdots, m_{E}\right\}}\left\{\left|\nabla h_{k}\left(x^{*}\right)^{\mathrm{T}} d\right|\right\}\right\}>0,
\end{aligned}
$$

where \mathcal{D}_{I} is defined as

$$
\mathcal{D}_{I}=\left\{d:\|d\|_{1}=1, \exists t>0 \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X)\right\} .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{1} \cap \mathcal{D}_{I}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{1}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{f}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{\circ}\right\}
$$

and the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{2}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{I}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{\mathrm{f}}\right\} .
$$

First-Order Clustering in X_{3}

Lemma: Suppose x^{*} is a constrained minimizer and $\exists \alpha>0$ and a set \mathcal{D}_{1} s.t.

$$
\begin{aligned}
& L_{f}=\inf _{d \in \mathcal{D}_{1} \mathcal{D}_{I}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0, \\
& L_{I}=\inf _{d \in \mathcal{D}_{I} \mathcal{D}_{1}} \max \left\{\max _{j \in \mathcal{A}\left(x^{*}\right)}\left\{\nabla g_{j}\left(x^{*}\right)^{\mathrm{T}} d\right\}, \max _{k \in\left\{1, \cdots, m_{\mathcal{E}}\right\}}\left\{\left|\nabla h_{k}\left(x^{*}\right)^{\mathrm{T}} d\right|\right\}\right\}>0,
\end{aligned}
$$

where \mathcal{D}_{I} is defined as

$$
\mathcal{D}_{I}=\left\{d:\|d\|_{1}=1, \exists t>0 \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X)\right\} .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{1} \cap \mathcal{D}_{I}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{1}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{f}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{\circ}\right\}
$$

and the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{2}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{I}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{\mathrm{f}}\right\} .
$$

First-Order Clustering in X_{3}

Lemma: Suppose x^{*} is a constrained minimizer and $\exists \alpha>0$ and a set \mathcal{D}_{1} s.t.

$$
\begin{aligned}
& L_{f}=\inf _{d \in \mathcal{D}_{1} \cap \mathcal{D}_{I}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0 \\
& L_{I}=\inf _{d \in \mathcal{D}_{I} \mathcal{D}_{1}} \max \left\{\max _{j \in \mathcal{A}\left(x^{*}\right)}\left\{\nabla g_{j}\left(x^{*}\right)^{\mathrm{T}} d\right\}, \max _{k \in\left\{1, \cdots, m_{E}\right\}}\left\{\left|\nabla h_{k}\left(x^{*}\right)^{\mathrm{T}} d\right|\right\}\right\}>0,
\end{aligned}
$$

where \mathcal{D}_{I} is defined as

$$
\mathcal{D}_{I}=\left\{d:\|d\|_{1}=1, \exists t>0 \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X)\right\} .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{1} \cap \mathcal{D}_{I}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{1}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{f}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{0}\right\}
$$

and the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{2}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{I}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{\mathrm{f}}\right\} .
$$

Furthermore, suppose x^{*} is at the center of a box, B_{δ}, of width $\delta=\left(\frac{\varepsilon}{\tau^{*}}\right)^{\frac{1}{\beta^{*}}}$ placed while covering \hat{X}_{5}.
Then the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}, t>0\right\} \backslash B_{\delta}
$$

is overestimated by

$$
\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left[\frac{L_{I}}{4} \delta, \varepsilon^{\mathrm{f}}\right]\right\}
$$

First-Order Clustering in X_{3}

Lemma: Suppose x^{*} is a constrained minimizer and $\exists \alpha>0$ and a set \mathcal{D}_{1} s.t.

$$
\begin{aligned}
& L_{f}=\inf _{d \in \mathcal{D}_{1} \cap \mathcal{D}_{I}} \nabla f\left(x^{*}\right)^{\mathrm{T}} d>0, \\
& L_{I}=\inf _{d \in \mathcal{D}_{I} \mathcal{D}_{1}} \max \left\{\max _{j \in \mathcal{A}\left(x^{*}\right)}\left\{\nabla g_{j}\left(x^{*}\right)^{\mathrm{T}} d\right\}, \max _{k \in\left\{1, \cdots, m_{\Xi}\right\}}\left\{\left|\nabla h_{k}\left(x^{*}\right)^{\mathrm{T}} d\right|\right\}\right\}>0,
\end{aligned}
$$

where \mathcal{D}_{I} is defined as

$$
\mathcal{D}_{I}=\left\{d:\|d\|_{1}=1, \exists t>0 \text { s.t. }\left(x^{*}+t d\right) \in \mathcal{N}_{\alpha}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X)\right\} .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{1} \cap \mathcal{D}_{I}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{1}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{f}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{0}\right\}
$$

and the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}, t>0\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{2}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): L_{I}\left\|x-x^{*}\right\|_{1} \leq 2 \varepsilon^{\mathrm{f}}\right\} .
$$

Furthermore, suppose x^{*} is at the center of a box, B_{δ}, of width $\delta=\left(\frac{\varepsilon}{\tau^{*}}\right)^{\frac{1}{\beta^{*}}}$ placed while covering \hat{X}_{5}.
Then the region

$$
\mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+t d\right) \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}, t>0\right\} \backslash B_{\delta}
$$

is overestimated by

$$
\left\{x \in \mathcal{N}_{\hat{\alpha}}^{1}\left(x^{*}\right): \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left[\frac{L_{I}}{4} \delta, \varepsilon^{\mathrm{f}}\right]\right\}
$$

First-Order Clustering in X_{3}

Theorem: Suppose the conditions of the Lemma hold.
Let $\delta=\delta_{f}=\left(\frac{\varepsilon}{\tau^{*}}\right)^{\frac{1}{\beta^{*}}}=\left(\frac{\varepsilon^{\mathrm{o}}}{\tau^{\mathrm{f}}}\right)^{\frac{1}{\beta^{\digamma}}}, \delta_{I}=\left(\frac{L_{I} \delta}{4 \tau^{I}}\right)^{\frac{1}{\beta^{\mathrm{I}}}}=\left(\frac{L_{I}}{4 \tau^{\mathrm{I}}}\right)^{\frac{1}{\beta^{\mathrm{I}}}}\left(\frac{\varepsilon^{\mathrm{f}}}{\tau^{\mathrm{f}}}\right)^{\frac{1}{\left(\beta^{1}\right)^{2}}}, r_{I}=\frac{2 \varepsilon^{\mathrm{f}}}{L_{I}}, r_{f}=\frac{2 \varepsilon^{\mathrm{o}}}{L_{f}}$.

1. If $\delta_{I} \geq 2 r_{I}$, then let $N_{I}=1$.
2. If $\frac{2 r_{I}}{m_{I}^{\prime}-1}>\delta_{I} \geq \frac{2 r_{I}}{m_{I}^{\prime}}$ for some $m_{I} \in \mathbb{N}$ with $m_{I}^{\prime} \leq n, 2 \leq m_{I}^{\prime} \leq 6$, then let $N_{I}=\sum_{i=0}^{m_{I}^{\prime}-1} 2^{i}\binom{n}{i}+2 n\left\lceil\frac{m_{I}^{\prime}-3}{3}\right\rceil$.
3. Otherwise, $N_{I}=\left\lceil 0.5\left(\tau^{\mathrm{I}}\right)^{\frac{2}{\beta^{1}}}\left(\varepsilon^{\mathrm{f}}\right)^{1-\frac{1}{\left(\beta^{1}\right)^{2}} L_{I}^{-\frac{2}{\beta^{1}}}}\right]^{n-1}\left(\left[0.5\left(\tau^{\mathrm{I}}\right)^{\frac{2}{\beta^{1}}}\left(\varepsilon^{\mathrm{f}}\right)^{1-\frac{1}{\left(\beta^{1}\right)^{2}} L_{I}^{-\frac{2}{\beta^{\mathrm{l}}}}}\right]+2 n\left[0.25\left(\tau^{\mathrm{I}}\right)^{\frac{2}{\beta^{1}}}\left(\varepsilon^{\mathrm{f}}\right)^{1-\frac{1}{\left(\beta^{1}\right)^{2}} L_{I}^{-\frac{2}{\beta^{\mathrm{l}}}}}\right]\right)$.
4. If $\delta_{f} \geq 2 r_{f}$, then let $N_{f}=1$.
5. If $\frac{2 r_{f}}{m_{f}-1}>\delta_{f} \geq \frac{2 r_{f}}{m_{f}}$ for some $m_{f} \in \mathbb{N}$ with $m_{f} \leq n, 2 \leq m_{f} \leq 6$, then let $N_{f}=\sum_{i=0}^{m_{f}-1} 2^{i}\binom{n}{i}+2 n\left\lceil\frac{m_{f}-3}{3}\right\rceil$.
6. Otherwise, $N_{f}=\left\lceil 2\left(\tau^{\mathrm{f}}\right)^{\frac{1}{\beta^{\natural}}}\left(\varepsilon^{\mathrm{o}}\right)^{1-\frac{1}{\beta^{\natural}}} L_{f}^{-\frac{1}{\beta^{\natural}}}\right]^{n-1}\left(\left[2\left(\tau^{\mathrm{f}}\right)^{\frac{1}{\beta^{\natural}}}\left(\varepsilon^{\mathrm{o}}\right)^{1-\frac{1}{\beta^{\natural}}} L_{f}^{-\frac{1}{\beta^{\natural}}}\right]+2 n\left\lceil\left(\tau^{\mathrm{f}}\right)^{\frac{1}{\beta^{\natural}}}\left(\varepsilon^{\mathrm{o}}\right)^{1-\frac{1}{\beta^{\natural}}} L_{f}^{-\frac{1}{\beta^{\natural}}}\right\rceil\right)$.
N_{I} is an upper bound on the number of boxes of width δ_{I} required to cover $\hat{X}_{3}^{2} \backslash \hat{X}_{5}$ and N_{f} is an upper bound on the number of boxes of width δ_{f} required to cover \hat{X}_{3}^{1}.

First-Order Clustering in X_{3}

Number of boxes required to cover \hat{X}_{3}^{1} when $\beta^{f}=1$

Case	Number of boxes
$\tau^{f} \leq \frac{L_{f}}{4}$	1
$\frac{L_{f}}{4}<\tau^{f} \leq \frac{2 L_{f}}{4}$	$1+2 n$
$\frac{2 L_{f}}{4}<\tau^{f} \leq \frac{3 L_{f}}{4}$	$1+2 n^{2}$
$\frac{3 L_{f}}{4}<\tau^{f} \leq \frac{4 L_{f}}{4}$	$1+\frac{14}{3} n-2 n^{2}+\frac{4}{3} n^{3}$
\vdots	\vdots
$\frac{6 L_{f}}{4}<\tau^{f}$	$\left\lceil 2 \tau^{f} L_{f}-1\right\rceil^{n-1}\left(\left\lceil 2 \tau^{f} L_{f}^{-1}\right\rceil+2 n\left\lceil\tau^{f} L_{f}^{-1}\right\rceil\right)$

$$
\text { Number of boxes required to cover } \hat{X}_{3}^{2} \backslash \hat{X}_{5} \text { when } \beta^{I}=1
$$

Case	Number of boxes
$\tau^{I} \leq \frac{L_{I}}{4}$	1
$\frac{L_{I}}{4}<\tau^{I} \leq \frac{\sqrt{2} L_{I}}{4}$	$1+2 n$
$\frac{\sqrt{2} L_{I}}{4}<\tau^{I} \leq \frac{\sqrt{3} L_{I}}{4}$	$1+2 n^{2}$
$\frac{\sqrt{3} L_{I}}{4}<\tau^{I} \leq \frac{\sqrt{4} L_{I}}{4}$	$1+\frac{14}{3} n-2 n^{2}+\frac{4}{3} n^{3}$
\vdots	\vdots
$\frac{\sqrt{6} L_{I}}{4}<\tau^{I}$	$\left\lceil 0.5\left(\tau^{I}\right)^{2} L_{I}{ }^{-2}\right\rceil^{n-1}\left(\left\lceil 0.5\left(\tau^{I}\right)^{2} L_{I}{ }^{-2}\right\rceil+2 n\left\lceil 0.25\left(\tau^{I}\right)^{2} L_{I}{ }^{-2}\right\rceil\right)$

Lemma: Suppose x^{*} is a constrained minimizer and $\exists \alpha>0, \gamma_{1}>0, \gamma_{2}>0$, and a set \mathcal{D}_{1} s.t.

$$
\begin{aligned}
& \nabla f\left(x^{*}\right)^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} \nabla^{2} f\left(x^{*}\right) d \geq \gamma_{1} d^{\mathrm{T}} d, \quad \forall d \in \mathcal{D}_{1} \cap \mathcal{D}_{I} \\
& \max \left\{\max _{j \in \mathcal{A}\left(x^{*}\right)}\left\{\nabla g_{j}\left(x^{*}\right)^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} \nabla^{2} \mathrm{~g}_{j}\left(x^{*}\right) d\right\}, \max _{k \in\left\{1, \cdots, m_{E}\right\}}\left\{\left|\nabla h_{k}\left(x^{*}\right)^{\mathrm{T}} d+\frac{1}{2} d^{\mathrm{T}} \nabla^{2} h_{k}\left(x^{*}\right) d\right|\right\}\right\} \geq \gamma_{2} d^{\mathrm{T}} d, \quad \forall d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1},
\end{aligned}
$$

where \mathcal{D}_{I} is defined as

$$
\mathcal{D}_{I}=\left\{d:\left(x^{*}+d\right) \in \mathcal{N}_{\alpha}^{2}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X)\right\} .
$$

Then $\exists \hat{\alpha} \in(0, \alpha]$ s.t. the region

$$
\mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+d\right) \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{1} \cap \mathcal{D}_{I}\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{1}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right): \gamma_{1}\left\|x-x^{*}\right\|_{2}^{2} \leq 2 \varepsilon^{0}\right\}
$$

and the region

$$
\mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+d\right) \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}\right\}
$$

is overestimated by

$$
\hat{X}_{3}^{2}=\left\{x \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right): \gamma_{2}\left\|x-x^{*}\right\|_{2}^{2} \leq 2 \varepsilon^{\mathrm{f}}\right\} .
$$

Furthermore, suppose x^{*} is at the center of a box, B_{δ}, of width $\delta=\left(\frac{\varepsilon}{\tau^{*}}\right)^{\frac{1}{\beta^{*}}}$ placed while covering \hat{X}_{5}.
Then the region

$$
\mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap X_{3} \cap\left\{x=\left(x^{*}+d\right) \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right) \cap \mathcal{F}^{\mathrm{C}}(X): d \in \mathcal{D}_{I} \backslash \mathcal{D}_{1}\right\} \backslash B_{\delta}
$$

is overestimated by

$$
\left\{x \in \mathcal{N}_{\hat{\alpha}}^{2}\left(x^{*}\right): \max \left\{d\left(\{g(x)\}, \mathbb{R}_{-}^{m_{I}}\right), d(\{h(x)\},\{0\})\right\} \in\left[\frac{\gamma_{2}}{8} \delta^{2}, \varepsilon^{\mathrm{f}}\right]\right\}
$$

Revisiting the motivating examples

$$
\begin{array}{ll}
\min _{x, y} & y^{2}-12 x-7 y \\
\text { s.t. } & y+2 x^{4}-2=0, \\
& x \in[0,2], y \in[0,3] .
\end{array}
$$

Revisiting the motivating examples

$$
\begin{aligned}
\min _{x, y} & -x-y \\
\text { s.t. } & y \leq 2+2 x^{4}-8 x^{3}+8 x^{2} \\
& y \leq 4 x^{4}-32 x^{3}+88 x^{2}-96 x+36, \\
& x \in[0,3], y \in[0,4] .
\end{aligned}
$$

Summary

- Illustrated the cluster problem (or lack thereof) in constrained optimization as motivation for analysis
- Proposed a notion of convergence order for convex relaxationbased lower bounding schemes for constrained problems
- Established sufficient conditions for first-order and secondorder convergence of convex relaxation-based lower bounding schemes to mitigate clustering

Acknowledgements

- The Barton lab

