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Chance-Constrained Programming

ν∗ := min
x∈X

f (x) (CCP)

s.t. P {g(x , ξ) ≤ 0} ≥ 1− α

• Introduced by Charnes et al. (1958); Charnes and Cooper (1959)

• Extended by Miller and Wagner (1965) to include joint chance
constraints and by Prékopa (1970) to the nonlinear setting

• Applications:
▶ Process optimization (Li et al., 2008)
▶ Infrastructure networks (Gotzes et al., 2016; Roald et al., 2013)
▶ Portfolio optimization (Shapiro et al., 2009)

• Challenges:

1 Feasible region can be nonconvex even if g is affine in (x , ξ)
2 Checking feasibility involves multi-dimensional integration
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Formulation

ν∗α := min
x∈X

f (x) (CCP)

s.t. P {g(x , ξ) ≤ 0} ≥ 1− α

• Assume:
▶ X ⊂ Rn is nonempty, compact, and convex
▶ f : Rn → R is continuous and quasiconvex
▶ g : Rn × Rd → Rm is continuously differentiable
▶ Other relatively mild technical assumptions . . .

• Do not assume:
▶ Distribution of the random vector ξ (only need i.i.d. samples)
▶ Structure of the vector-valued function g

• Can model joint chance constraints, deterministic nonconvex
constraints, and some models with recourse
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Solution Approaches

ν∗α := min
x∈X

f (x) (CCP)

s.t. P {g(x , ξ) ≤ 0} ≥ 1− α

• Deterministic equivalent (Prékopa, 1995; Lagoa et al., 2005)
▶ Reformulate as a convex program
▶ Strong assumptions on form of g , distribution of ξ

• Convex inner-approximations (Rockafellar and Uryasev, 2000;
Nemirovski and Shapiro, 2006)
▶ Inner-approximate the feasible region with a convex set
▶ Can be solved efficiently, but often yield conservative solutions

• Several other approaches, e.g., Norkin (1993); Andrieu et al.
(2007); Lepp (2009); van Ackooij and Henrion (2014, 2017);
Curtis et al. (2018); Peña-Ordieres et al. (2020)
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Scenario Approximation

• Draw a fixed sample {ξi}Ni=1 of the random vector

• Solve the scenario approximation problem (Calafiore and
Campi, 2005; Campi and Garatti, 2011)

x̂N ∈ argmin
x∈X

f (x)

s.t. g(x , ξi ) ≤ 0, ∀i ∈ {1, . . . ,N}

• Estimate P {g(x̂N , ξ) ≤ 0} and tune sample size N accordingly

• Theory on sample size N required to ensure that x̂N is feasible
to (CCP) with high probability
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Sample Average Approximation

• Draw a fixed sample {ξi}Ni=1 of the random vector

• Solve the SAA problem (Luedtke and Ahmed, 2008)

x̂N ∈ argmin
x∈X

f (x)

s.t.
1

N

N∑
i=1

1
[
g(x , ξi )

]
≤ γ

for some γ ∈ [0, α), where 1 [·] is the l.s.c. step function

• Can reformulate as an MI(N)LP, but typically require tailored
approaches for efficient solution

• Estimate P {g(x̂N , ξ) ≤ 0} and tune γ, N accordingly

• Theory on sample size N required to ensure that x̂N is feasible
to (CCP) with high probability
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Smooth Approximation of SAA

• Recent renewed interest in smooth approximations (Hong
et al., 2011; Geletu et al., 2017; Cao and Zavala, 2017)

x̂N ∈ argmin
x∈X

f (x)

s.t.
1

N

N∑
i=1

ϕ(g(x , ξi )) ≤ γ

where ϕ(·) is a smooth approximation of 1 [·]
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Exterior Sampling may lead to Spurious Local Minima

• Consider the following chance constraint (Curtis et al., 2018):

P
{
0.25x41 −

1

3
x31 − x21 + 0.2x1 − 19.5 + ξ1x1 + ξ1ξ0 ≤ x2

}
≥ 0.95,

where ξ1 ∼ U(−3, 3) and ξ0 ∼ U(−12, 12) are independent.
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The Efficient Frontier of Risk versus Reward

ν∗α := min
x∈X

f (x) (CCP)

s.t. P {g(x , ξ) ≤ 0} ≥ 1− α

Decision makers are often interested in generating the efficient
frontier of optimal objective value (ν∗α) versus risk level (α) rather
than simply solving (CCP) for a single prespecified risk level.

— Rengarajan and Morton (2009); Luedtke (2014)

• Efficient frontier can be recovered by solving

min
x∈X

P {g(x , ξ) ̸≤ 0} ≡

s.t. f (x) ≤ ν

min
x∈X

E [max [1 [g(x , ξ)]]] (SP)

s.t. f (x) ≤ ν
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Approximating the Efficient Frontier efficiently

min
x∈X

E [max [1 [g(x , ξ)]]] ≈

s.t. f (x) ≤ ν

min
x∈X

E [max [ϕk (g(x , ξ))]] (APPν)

s.t. f (x) ≤ ν

where ϕk(·)→ 1 [·] is a sequence of smooth approximations

• (APPν) can be solved using stochastic subgradient methods
Projected Stochastic Subgradient (Davis and Drusvyatskiy, 2018)

Input: Initial guess x1 ∈ X , number of iterations T , mini-batch
size M, and step length γ > 0

for t = 1, · · · ,T do
for j = 1, · · · ,M do

Let ξj be a random observation of ξ
Compute gt,j ∈ ∂x max

[
ϕk

(
g(xt , ξ

j)
)]

end for
Let xt+1 = ProjX

(
xt − γ 1

M

∑M
j=1 gt,j

)
end for
Output: xT+1 or iterate with smallest estimated objective value
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Outline of the Algorithm

Approximating the Efficient Frontier of (CCP)

Input: initial guess x0 ∈ X , sequence of objective bounds {νk},
and lower bound on risk level αlow ∈ (0, 1)

Output: pairs {(ν i , αi )} of objective values and risk levels used
to approximate the efficient frontier, solutions {x i}

Preprocessing: determine suitably scaled sequence of smoothing
functions {ϕk} and a sequence of step lengths

Initialize iteration count i = 0
repeat

Set i ← i + 1, ν ← ν i , initial guess = x i−1

Solve sequence of smooth approximations (APPν) using
projected stochastic subgradient to obtain solution x i

Estimate risk level αi of solution x i

until αi ≤ αlow
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Choosing key algorithmic parameters

Specifying an initial guess

• Determine point x0 and bound ν1 by solving a small-sample
scenario approximation problem (to global optimality)

(ν1, x0) : min
x∈X

f (x)

s.t. g(x , ξj) ≤ 0, ∀j ∈ {1, . . . ,N}

Scaling the sequence of smoothing functions {ϕk}

• Set ϕk,j(y) :=
1

1 + exp
(

−y
τk,j

) for smoothing parameter τk,j

• Draw {ξj}Nj=1, set τk,j := O((0.1)k−1)median
(
{|gj(x0, ξj)|}Nj=1

)
Choosing step lengths

• Can leverage adaptive subgradient methods to tune step lengths
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Flavor of theoretical results

min
x∈X

E [max [1 [g(x , ξ)]]] (SP)

s.t. f (x) ≤ ν

min
x∈X

E [max [ϕk (g(x , ξ))]] (APPk)

s.t. f (x) ≤ ν

Informal Theorem (Convergence of global solutions)

Every limit point of a sequence of global solutions to the
approximations (APPν) is a global solution to Problem (SP)

Informal Theorem (Convergence of stationary solutions)

Suppose the distribution function F (x , η) := P {max[g(x , ξ)] ≤ η}
is continuously differentiable on X × (−η̄, η̄) for some η̄ > 0.
Then every limit point of a sequence of stationary solutions to the
approximations (APPν) is a stationary solution to Problem (SP)
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s.t. f (x) ≤ ν

Informal Theorem (Convergence of global solutions)

Every limit point of a sequence of global solutions to the
approximations (APPν) is a global solution to Problem (SP)

Informal Theorem (Convergence of stationary solutions)
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Computational Results: Portfolio Optimization

max
t, x∈X

t

s.t. P
{
ξTx ≥ t

}
≥ 1− α,

where X :=
{
x ∈ R1000

+ :
∑

i xi = 1
}
, ξ ∼ N (µ,Σ)

Compare

• Exact solution (deterministic equivalent)

• Stochastic approximation (our approach)

• Scenario approximation with sample sizes N ∈ [10, 106]
• Sigmoidal approximation of Cao and Zavala (2017) for risk
level α = 0.01 and with the smoothing parameters tuned
▶ The sigmoidal approximation of 1 [·] used by Cao and Zavala

(2017) is different than our own

Rohit Kannan Stochastic Approximation for Chance Constraints November 8, 2021 13 / 24



Computational Results: Portfolio Optimization

max
t, x∈X

t

s.t. P
{
ξTx ≥ t

}
≥ 1− α,

where X :=
{
x ∈ R1000

+ :
∑

i xi = 1
}
, ξ ∼ N (µ,Σ)

Compare

• Exact solution (deterministic equivalent)

• Stochastic approximation (our approach)

• Scenario approximation with sample sizes N ∈ [10, 106]
• Sigmoidal approximation of Cao and Zavala (2017) for risk
level α = 0.01 and with the smoothing parameters tuned
▶ The sigmoidal approximation of 1 [·] used by Cao and Zavala

(2017) is different than our own

Rohit Kannan Stochastic Approximation for Chance Constraints November 8, 2021 13 / 24



Computational Results: Portfolio Optimization
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Results over ten different replicates
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Computational Results: Norm Optimization

min
x∈R100

+

−
100∑
i=1

xi

s.t. P

{∑
i

ξ2ijx
2
i ≤ U2, ∀j ∈ {1, . . . , 100}

}
≥ 1− α,

where ξij
i.i.d.∼ N (µ, σ)

Compare

• Exact solution (deterministic equivalent)

• Stochastic approximation (our approach)

• Scenario approximation with sample sizes N ∈ [10, 105]
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Computational Results: Norm Optimization
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Computational Results: Resource Allocation

min
x∈R20

+

cTx

s.t. P {x ∈ R(λ, ρ)} ≥ 1− α,

where

R(λ, ρ) =

{
x ∈ R20

+ : ∃y ∈ R20×30
+ s.t.

30∑
j=1

yij ≤ ρix
2
i , ∀i ∈ {1, · · · , 20},

20∑
i=1

µijyij ≥ λj , ∀j ∈ {1, · · · , 30}

}
.

▶ xi : quantity of resource i , ci : unit cost of resource i

▶ yij : amount of resource i allocated to customer type j

▶ ρi ∈ (0, 1]: random yield of resource i

▶ λj ≥ 0: random demand of customer type j

▶ µij ≥ 0: service rate of resource i for customer type j
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Computational Results: Resource Allocation
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Concluding Remarks
Proposed a stochastic subgradient method for approximating the
efficient frontier of chance-constrained NLPs

• Efficient frontier can help make informed decisions

• Smoothing + implicit sampling helps avoid bad local minima

• Harness the power of stochastic subgradient methods

• Consistently outperforms existing approaches

Paper: Math. Programming Computation, 13(4), pp. 705-751
Code: https://github.com/rohitkannan/SA-for-CCP

Interesting research directions

• Handling deterministic nonconvex constraints directly

• Reducing effort spent on projections

• Extension to distributionally robust chance constraints

Questions? rohitk@alum.mit.edu
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