
Learning to Accelerate Partitioning Algorithms
for the Global Optimization of Nonconvex

Quadratically-Constrained Quadratic Programs

Rohit Kannan

Center for Nonlinear Studies
Los Alamos National Laboratory

November 13, 2022

Joint work with Deepjyoti Deka and Harsha Nagarajan (LANL)

Funding

1. LANL LDRD 20230091ER: “Learning to Accelerate Global Solutions
for Non-convex Optimization”

2. Center for Nonlinear Studies at LANL

Motivation

Many important applications can be formulated as nonconvex QCQPs

AC Optimal Power Flow

Image Source: IEEE Innovation at Work

The Pooling Problem
Inputs Pools Outputs

Often, wish to repeatedly solve instances of the same nonconvex
problem with different data, e.g., loads, wind, qualities, prices

Can we exploit shared structure to accelerate global solution?

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 1 / 22

Motivation

Many important applications can be formulated as nonconvex QCQPs

AC Optimal Power Flow

Image Source: IEEE Innovation at Work

The Pooling Problem
Inputs Pools Outputs

Often, wish to repeatedly solve instances of the same nonconvex
problem with different data, e.g., loads, wind, qualities, prices

Can we exploit shared structure to accelerate global solution?

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 1 / 22

Motivation

Many important applications can be formulated as nonconvex QCQPs

AC Optimal Power Flow

Image Source: IEEE Innovation at Work

The Pooling Problem
Inputs Pools Outputs

Often, wish to repeatedly solve instances of the same nonconvex
problem with different data, e.g., loads, wind, qualities, prices

Can we exploit shared structure to accelerate global solution?

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 1 / 22

Heuristics can have a huge impact on global solvers

Alpine [NLW+19] is a Julia-based open-source global solver
developed at LANL for mixed-integer polynomial optimization

It has a key algorithmic parameter “PSF” (default PSF = 10)
PSF = Partition Scaling Factor. More on this parameter later...

Best choice of PSF can vary depending on instance

Alpine on three random QCQPs

PSF 4 10 15
Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Note: Alpine converges irrespective of
the choice of PSF

4 6 8 10 12 15 20
PSF

0

5

10

15

20

25

%
 o

f i
ns

ta
nc

es

Optimal PSF wrt solution time

In general, how to optimally specify a solver’s heuristic parameters
for a given instance? Heuristics usually tuned to work well on average

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 2 / 22

Heuristics can have a huge impact on global solvers

Alpine [NLW+19] is a Julia-based open-source global solver
developed at LANL for mixed-integer polynomial optimization

It has a key algorithmic parameter “PSF” (default PSF = 10)
PSF = Partition Scaling Factor. More on this parameter later...

Best choice of PSF can vary depending on instance

Alpine on three random QCQPs

PSF 4 10 15
Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Note: Alpine converges irrespective of
the choice of PSF

4 6 8 10 12 15 20
PSF

0

5

10

15

20

25

%
 o

f i
ns

ta
nc

es

Optimal PSF wrt solution time

In general, how to optimally specify a solver’s heuristic parameters
for a given instance? Heuristics usually tuned to work well on average

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 2 / 22

Heuristics can have a huge impact on global solvers

Alpine [NLW+19] is a Julia-based open-source global solver
developed at LANL for mixed-integer polynomial optimization

It has a key algorithmic parameter “PSF” (default PSF = 10)
PSF = Partition Scaling Factor. More on this parameter later...

Best choice of PSF can vary depending on instance

Alpine on three random QCQPs

PSF 4 10 15
Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Note: Alpine converges irrespective of
the choice of PSF

4 6 8 10 12 15 20
PSF

0

5

10

15

20

25

%
 o

f i
ns

ta
nc

es

Optimal PSF wrt solution time

In general, how to optimally specify a solver’s heuristic parameters
for a given instance? Heuristics usually tuned to work well on average

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 2 / 22

Heuristics can have a huge impact on global solvers

Alpine [NLW+19] is a Julia-based open-source global solver
developed at LANL for mixed-integer polynomial optimization

It has a key algorithmic parameter “PSF” (default PSF = 10)
PSF = Partition Scaling Factor. More on this parameter later...

Best choice of PSF can vary depending on instance

Alpine on three random QCQPs

PSF 4 10 15
Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Note: Alpine converges irrespective of
the choice of PSF

4 6 8 10 12 15 20
PSF

0

5

10

15

20

25

%
 o

f i
ns

ta
nc

es

Optimal PSF wrt solution time

In general, how to optimally specify a solver’s heuristic parameters
for a given instance? Heuristics usually tuned to work well on average

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 2 / 22

Heuristics can have a huge impact on global solvers

Alpine [NLW+19] is a Julia-based open-source global solver
developed at LANL for mixed-integer polynomial optimization

It has a key algorithmic parameter “PSF” (default PSF = 10)
PSF = Partition Scaling Factor. More on this parameter later...

Best choice of PSF can vary depending on instance

Alpine on three random QCQPs

PSF 4 10 15
Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Note: Alpine converges irrespective of
the choice of PSF

4 6 8 10 12 15 20
PSF

0

5

10

15

20

25

%
 o

f i
ns

ta
nc

es

Optimal PSF wrt solution time

In general, how to optimally specify a solver’s heuristic parameters
for a given instance? Heuristics usually tuned to work well on average

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 2 / 22

Related Work: Learning to Branch for MIPs

(MIP) min
x ,y

cTx + dTy

s.t. Ax + By ≤ b,

x ≥ 0, y ∈ {0, 1}dy

N0

N1

N3 N4

N5 N6

N2

y7 = 0

y2 = 0 y2 = 1

y5 = 0 y5 = 1

y7 = 1

• Order of branching decisions can be critical to ensuring that
the size of the branch-and-bound tree doesn’t explode
How to choose branching order?

• Strong Branching to choose branching variable at node
1 Try branching on all candidate y ’s, e.g. at N4: y1, y4, y5, y10

2 Branch on yi∗ to maximize the lower bound on the child nodes

Empirically reduces number of nodes in B&B tree by 65% on
average, but increases cost per node by 44%

• Several recent works use ML to compute cheap proxy of strong
branching for MILPs [ALW17, KLBS+16, GCF+19, NBG+20]

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 3 / 22

Related Work: Learning to Branch for MIPs

(MIP) min
x ,y

cTx + dTy

s.t. Ax + By ≤ b,

x ≥ 0, y ∈ {0, 1}dy

N0

N1

N3 N4

N5 N6

N2

y7 = 0

y2 = 0 y2 = 1

y5 = 0 y5 = 1

y7 = 1

• Order of branching decisions can be critical to ensuring that
the size of the branch-and-bound tree doesn’t explode
How to choose branching order?

• Strong Branching to choose branching variable at node
1 Try branching on all candidate y ’s, e.g. at N4: y1, y4, y5, y10

2 Branch on yi∗ to maximize the lower bound on the child nodes

Empirically reduces number of nodes in B&B tree by 65% on
average, but increases cost per node by 44%

• Several recent works use ML to compute cheap proxy of strong
branching for MILPs [ALW17, KLBS+16, GCF+19, NBG+20]

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 3 / 22

Related Work: Learning to Branch for MIPs

(MIP) min
x ,y

cTx + dTy

s.t. Ax + By ≤ b,

x ≥ 0, y ∈ {0, 1}dy

N0

N1

N3 N4

N5 N6

N2

y7 = 0

y2 = 0 y2 = 1

y5 = 0 y5 = 1

y7 = 1

• Order of branching decisions can be critical to ensuring that
the size of the branch-and-bound tree doesn’t explode
How to choose branching order?

• Strong Branching to choose branching variable at node
1 Try branching on all candidate y ’s, e.g. at N4: y1, y4, y5, y10

2 Branch on yi∗ to maximize the lower bound on the child nodes

Empirically reduces number of nodes in B&B tree by 65% on
average, but increases cost per node by 44%

• Several recent works use ML to compute cheap proxy of strong
branching for MILPs [ALW17, KLBS+16, GCF+19, NBG+20]

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 3 / 22

Related Work: Learning to Branch for MIPs

(MIP) min
x ,y

cTx + dTy

s.t. Ax + By ≤ b,

x ≥ 0, y ∈ {0, 1}dy

N0

N1

N3 N4

N5 N6

N2

y7 = 0

y2 = 0 y2 = 1

y5 = 0 y5 = 1

y7 = 1

• Order of branching decisions can be critical to ensuring that
the size of the branch-and-bound tree doesn’t explode
How to choose branching order?

• Strong Branching to choose branching variable at node
1 Try branching on all candidate y ’s, e.g. at N4: y1, y4, y5, y10

2 Branch on yi∗ to maximize the lower bound on the child nodes

Empirically reduces number of nodes in B&B tree by 65% on
average, but increases cost per node by 44%

• Several recent works use ML to compute cheap proxy of strong
branching for MILPs [ALW17, KLBS+16, GCF+19, NBG+20]

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 3 / 22

Related Work: Learning for (MI)NLPs

• Baltean-Lugojan et al. [BLBMT19] use neural networks (NNs)
to decide how to construct cheap outer-approximations of
SDP relaxations of QCQPs that retain their strength

• Ghaddar et al. [GGCGD+22, GRAPAP+22] use quantile
regression forests to choose a branching strategy within the
reformulation-linearization technique for polynomial programs

• Bonami et al. [BLZ18] learn a classifier to decide whether to
linearize binary-binary or binary-continuous products in MIQPs

• Nannicini et al. [NBL+11] train an SVM classifier to predict
whether to use an expensive bound tightening procedure
instead of feasibility-based bound tightening for MINLPs

• Cengil et al. [CNB+22] train DNNs to choose a subset of
variables on which to apply optimality-based bounds tightening
for AC Optimal Power Flow

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 4 / 22

Related Work: Learning for (MI)NLPs

• Baltean-Lugojan et al. [BLBMT19] use neural networks (NNs)
to decide how to construct cheap outer-approximations of
SDP relaxations of QCQPs that retain their strength

• Ghaddar et al. [GGCGD+22, GRAPAP+22] use quantile
regression forests to choose a branching strategy within the
reformulation-linearization technique for polynomial programs

• Bonami et al. [BLZ18] learn a classifier to decide whether to
linearize binary-binary or binary-continuous products in MIQPs

• Nannicini et al. [NBL+11] train an SVM classifier to predict
whether to use an expensive bound tightening procedure
instead of feasibility-based bound tightening for MINLPs

• Cengil et al. [CNB+22] train DNNs to choose a subset of
variables on which to apply optimality-based bounds tightening
for AC Optimal Power Flow

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 4 / 22

Global Optimization of QCQPs

Consider the following class of QCQPs:

ν∗ := min
x ,w

cTx + dTw

s.t. wij = xixj , ∀(i , j) ∈ B,
Ax + Bw ≤ b, x ∈ [−1, 1]dx

• The bilinear constraints are what make the problem hard

−1 −0.5 0 0.5 1 −1

0

1−1

0

1

x1

x2

w
1

2
=

x 1
x 2

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 5 / 22

Global Optimization of QCQPs

Consider the following class of QCQPs:

ν∗ := min
x ,w

cTx + dTw

s.t. wij = xixj , ∀(i , j) ∈ B,
Ax + Bw ≤ b, x ∈ [−1, 1]dx

• The bilinear constraints are what make the problem hard

• Get feasible solutions/upper bounds using local optimization

• Obtain lower bounds on ν∗ using relaxations

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 6 / 22

Relaxing Bilinear Terms
The feasible region of the hard bilinear constraints

wij = xixj , xi , xj ∈ [−1, 1] (1)

is a subset of the feasible region of the easy linear constraints
−xi − xj − 1≤ wij ≤ xi − xj + 1,

xi + xj − 1≤ wij ≤ xj − xi + 1, (2)

xi , xj ∈ [−1, 1]

Replace bilinear constraints (1) in the QCQP with
McCormick Relaxations (2) to determine a valid lower bound

ν∗ ≥ νM := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

−xi − xj − 1 ≤ wij ≤ xi − xj + 1, ∀(i , j) ∈ B,
xi + xj − 1 ≤ wij ≤ xj − xi + 1, ∀(i , j) ∈ B,
x ∈ [−1, 1]dx

Typically νM � ν∗. Close the gap using continuous B&B

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 7 / 22

Relaxing Bilinear Terms
The feasible region of the hard bilinear constraints

wij = xixj , xi , xj ∈ [−1, 1] (1)

is a subset of the feasible region of the easy linear constraints
−xi − xj − 1≤ wij ≤ xi − xj + 1,

xi + xj − 1≤ wij ≤ xj − xi + 1, (2)

xi , xj ∈ [−1, 1]

Replace bilinear constraints (1) in the QCQP with
McCormick Relaxations (2) to determine a valid lower bound

ν∗ ≥ νM := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

−xi − xj − 1 ≤ wij ≤ xi − xj + 1, ∀(i , j) ∈ B,
xi + xj − 1 ≤ wij ≤ xj − xi + 1, ∀(i , j) ∈ B,
x ∈ [−1, 1]dx

Typically νM � ν∗. Close the gap using continuous B&B

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 7 / 22

Relaxing Bilinear Terms
The feasible region of the hard bilinear constraints

wij = xixj , xi , xj ∈ [−1, 1] (1)

is a subset of the feasible region of the easy linear constraints
−xi − xj − 1≤ wij ≤ xi − xj + 1,

xi + xj − 1≤ wij ≤ xj − xi + 1, (2)

xi , xj ∈ [−1, 1]

Replace bilinear constraints (1) in the QCQP with
McCormick Relaxations (2) to determine a valid lower bound

ν∗ ≥ νM := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

−xi − xj − 1 ≤ wij ≤ xi − xj + 1, ∀(i , j) ∈ B,
xi + xj − 1 ≤ wij ≤ xj − xi + 1, ∀(i , j) ∈ B,
x ∈ [−1, 1]dx

Typically νM � ν∗. Close the gap using continuous B&B
Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 7 / 22

Tighten Relaxations By Partitioning Variable Domains

• Partition variable domains into “disjoint” subintervals, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5, 1]

• Construct Piecewise McCormick Relaxations on the variable
partitions and solve a MIP to obtain lower bound

ν∗ ≥ νPMR := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

where pi is the vector of partitioning points for xi
• Refine variable partitions, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5,−0.2] OR [−0.2, 1]

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 8 / 22

Tighten Relaxations By Partitioning Variable Domains

• Partition variable domains into “disjoint” subintervals, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5, 1]

• Construct Piecewise McCormick Relaxations on the variable
partitions and solve a MIP to obtain lower bound

ν∗ ≥ νPMR := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

where pi is the vector of partitioning points for xi

• Refine variable partitions, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5,−0.2] OR [−0.2, 1]

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 8 / 22

Tighten Relaxations By Partitioning Variable Domains

• Partition variable domains into “disjoint” subintervals, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5, 1]

• Construct Piecewise McCormick Relaxations on the variable
partitions and solve a MIP to obtain lower bound

ν∗ ≥ νPMR := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

where pi is the vector of partitioning points for xi
• Refine variable partitions, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5,−0.2] OR [−0.2, 1]

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 8 / 22

The Lower Part of the Piecewise McCormick Relaxations

Partitions: x1 ∈ [−1, 0] OR [0, 1], x2 ∈ [−1, 0] OR [0, 1]

−1 −0.5 0 0.5 1 −1

0

1−1

0

1

x1

x2

w
1

2
=

x 1
x 2

Both the number AND choice of partitioning points influence
number of iterations for Alpine to converge

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 9 / 22

The Lower Part of the Piecewise McCormick Relaxations

Partitions: x1 ∈ [−1, 0] OR [0, 1], x2 ∈ [−1, 0] OR [0, 1]

−1 −0.5 0 0.5 1 −1

0

1−1

0

1

x1

x2

w
1

2
=

x 1
x 2

Both the number AND choice of partitioning points influence
number of iterations for Alpine to converge

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 9 / 22

How Does Alpine Pick Partitioning Points?
Recall: Alpine has a key algorithmic parameter “PSF” (default PSF = 10)

Best choice of PSF can vary depending on instance
PSF 4 10 15

Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Alpine’s strategy: refine partitions around a nominal point x̄ (e.g.,
around a feasible solution or solution to relaxation)

• Example: if x̄ = (0.3, 0) and parameter PSF = 4

−1 10.3
()

−0.2 0.8x̄1

width =
1−(−1)

PSF

−1 10
()

−0.5 0.5x̄2

Although there are some empirical and theoretical motivations for
the above partitioning strategy, it is still quite ad hoc

Can we choose better partitioning points to promote faster convergence?

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 10 / 22

How Does Alpine Pick Partitioning Points?
Recall: Alpine has a key algorithmic parameter “PSF” (default PSF = 10)

Best choice of PSF can vary depending on instance
PSF 4 10 15

Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Alpine’s strategy: refine partitions around a nominal point x̄ (e.g.,
around a feasible solution or solution to relaxation)

• Example: if x̄ = (0.3, 0) and parameter PSF = 4

−1 10.3
()

−0.2 0.8x̄1

width =
1−(−1)

PSF

−1 10
()

−0.5 0.5x̄2

Although there are some empirical and theoretical motivations for
the above partitioning strategy, it is still quite ad hoc

Can we choose better partitioning points to promote faster convergence?

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 10 / 22

How Does Alpine Pick Partitioning Points?
Recall: Alpine has a key algorithmic parameter “PSF” (default PSF = 10)

Best choice of PSF can vary depending on instance
PSF 4 10 15

Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Alpine’s strategy: refine partitions around a nominal point x̄ (e.g.,
around a feasible solution or solution to relaxation)

• Example: if x̄ = (0.3, 0) and parameter PSF = 4

−1 10.3
()

−0.2 0.8x̄1

width =
1−(−1)

PSF

−1 10
()

−0.5 0.5x̄2

Although there are some empirical and theoretical motivations for
the above partitioning strategy, it is still quite ad hoc

Can we choose better partitioning points to promote faster convergence?
Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 10 / 22

Strong Partitioning (SP) to Improve Choice of Partitions

New Approach: Choose partitioning points to maximize the lower bound

p∗ ∈ arg max
p∈P

νPMR(p),

• pi is the vector of partitioning points for xi

νPMR(p) := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

• From iteration 2, use Alpine’s partitioning strategy
(guaranteed to converge irrespective of points chosen by SP)

How to solve this max-min problem (locally)? Using sensitivity analysis

Solving this max-min problem may be as hard as solving the QCQP!

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 11 / 22

Strong Partitioning (SP) to Improve Choice of Partitions

New Approach: Choose partitioning points to maximize the lower bound

p∗ ∈ arg max
p∈P

νPMR(p),

• pi is the vector of partitioning points for xi

νPMR(p) := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

• From iteration 2, use Alpine’s partitioning strategy
(guaranteed to converge irrespective of points chosen by SP)

How to solve this max-min problem (locally)? Using sensitivity analysis

Solving this max-min problem may be as hard as solving the QCQP!

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 11 / 22

Strong Partitioning (SP) to Improve Choice of Partitions

New Approach: Choose partitioning points to maximize the lower bound

p∗ ∈ arg max
p∈P

νPMR(p),

• pi is the vector of partitioning points for xi

νPMR(p) := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

• From iteration 2, use Alpine’s partitioning strategy
(guaranteed to converge irrespective of points chosen by SP)

How to solve this max-min problem (locally)?

Using sensitivity analysis

Solving this max-min problem may be as hard as solving the QCQP!

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 11 / 22

Strong Partitioning (SP) to Improve Choice of Partitions

New Approach: Choose partitioning points to maximize the lower bound

p∗ ∈ arg max
p∈P

νPMR(p),

• pi is the vector of partitioning points for xi

νPMR(p) := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

• From iteration 2, use Alpine’s partitioning strategy
(guaranteed to converge irrespective of points chosen by SP)

How to solve this max-min problem (locally)? Using sensitivity analysis

Solving this max-min problem may be as hard as solving the QCQP!

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 11 / 22

Strong Partitioning (SP) to Improve Choice of Partitions

New Approach: Choose partitioning points to maximize the lower bound

p∗ ∈ arg max
p∈P

νPMR(p),

• pi is the vector of partitioning points for xi

νPMR(p) := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

• From iteration 2, use Alpine’s partitioning strategy
(guaranteed to converge irrespective of points chosen by SP)

How to solve this max-min problem (locally)? Using sensitivity analysis

Solving this max-min problem may be as hard as solving the QCQP!
Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 11 / 22

Using ML to Accelerate Alpine
Given family of random QCQPs of the form [BST09]

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Parameters θ vary from one instance to the next

Input: underlying problem, distribution of parameters θ
Output: ML model that predicts partitioning points given θ̄

• Generate N training samples {θi} of the problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 12 / 22

Using ML to Accelerate Alpine
Given family of random QCQPs of the form [BST09]

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Parameters θ vary from one instance to the next

Input: underlying problem, distribution of parameters θ
Output: ML model that predicts partitioning points given θ̄

• Generate N training samples {θi} of the problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 12 / 22

Using ML to Accelerate Alpine
Given family of random QCQPs of the form [BST09]

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Parameters θ vary from one instance to the next

Input: underlying problem, distribution of parameters θ
Output: ML model that predicts partitioning points given θ̄

• Generate N training samples {θi} of the problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 12 / 22

Using ML to Accelerate Alpine
Input: underlying problem, distribution of parameters θ

Output: ML model that predicts partitioning points given θ̄

• Generate 1000 training samples {θi} of problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Use Scikit-learn’s AdaBoostRegressor to train Regression Trees
with max depth = 25, num estimators = 1000 (no tuning!)
• Features for training and prediction:

I Parameter θ
I Best found feasible solution during presolve (one local solve)
I McCormick lower bounding solution (no partitioning)

• Use 10-fold cross validation to generate predictions for {θi}

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 13 / 22

Using ML to Accelerate Alpine
Input: underlying problem, distribution of parameters θ

Output: ML model that predicts partitioning points given θ̄

• Generate 1000 training samples {θi} of problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Use Scikit-learn’s AdaBoostRegressor to train Regression Trees
with max depth = 25, num estimators = 1000 (no tuning!)
• Features for training and prediction:

I Parameter θ
I Best found feasible solution during presolve (one local solve)
I McCormick lower bounding solution (no partitioning)

• Use 10-fold cross validation to generate predictions for {θi}

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 13 / 22

Using ML to Accelerate Alpine
Input: underlying problem, distribution of parameters θ

Output: ML model that predicts partitioning points given θ̄

• Generate 1000 training samples {θi} of problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Use Scikit-learn’s AdaBoostRegressor to train Regression Trees
with max depth = 25, num estimators = 1000 (no tuning!)
• Features for training and prediction:

I Parameter θ
I Best found feasible solution during presolve (one local solve)
I McCormick lower bounding solution (no partitioning)

• Use 10-fold cross validation to generate predictions for {θi}

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 13 / 22

Numerical Experiments on Random QCQPs

Consider random QCQPs of the form [BST09]

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Parameters θ vary from one instance to the next

Consider instances with

• dx ∈ {10, 20, 50} variables

• 5dx bilinear terms (45 for dx = 10)

• dx bilinear inequalities

• dx/5 linear equalities

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 14 / 22

Numerical Experiments on Random QCQPs

Consider random QCQPs of the form [BST09]

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Parameters θ vary from one instance to the next

Consider instances with

• dx ∈ {10, 20, 50} variables

• 5dx bilinear terms (45 for dx = 10)

• dx bilinear inequalities

• dx/5 linear equalities

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 14 / 22

Numerical Results for Random QCQPs
Results for dx = 10 variables

• Generate 1000 random QCQPs with varying parameters θ
• For each instance, determine 2 optimal partitioning points per

variable by solving a max-min problem
• Eliminate optimal partitioning points that aren’t useful

0.1 0.2 0.5 1 2 3
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so

lv
ed

 w
it
hi

n
ti
m

e
T

dx=10

Default
SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 2x 1.1 7.7

2x − 3x 10.2 11.4

3x − 5x 47.4 38.5

5x − 10x 40.1 40.0

> 10x 1.2 0.1

0.5x − 1x 2.1

< 0.5x 0.2

Average Speedup (Shifted GM):

Alpine+SP: 4.5x , Alpine+ML: 3.5x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 15 / 22

Numerical Results for Random QCQPs
Results for dx = 10 variables

• Generate 1000 random QCQPs with varying parameters θ
• For each instance, determine 2 optimal partitioning points per

variable by solving a max-min problem
• Eliminate optimal partitioning points that aren’t useful

0.1 0.2 0.5 1 2 3
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so

lv
ed

 w
it
hi

n
ti
m

e
T

dx=10

Default
SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 2x 1.1 7.7

2x − 3x 10.2 11.4

3x − 5x 47.4 38.5

5x − 10x 40.1 40.0

> 10x 1.2 0.1

0.5x − 1x 2.1

< 0.5x 0.2

Average Speedup (Shifted GM):

Alpine+SP: 4.5x , Alpine+ML: 3.5x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 15 / 22

Numerical Results for Random QCQPs
Results for dx = 10 variables

• Generate 1000 random QCQPs with varying parameters θ
• For each instance, determine 2 optimal partitioning points per

variable by solving a max-min problem
• Eliminate optimal partitioning points that aren’t useful

0.1 0.2 0.5 1 2 3
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so

lv
ed

 w
it
hi

n
ti
m

e
T

dx=10

Default
SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 2x 1.1 7.7

2x − 3x 10.2 11.4

3x − 5x 47.4 38.5

5x − 10x 40.1 40.0

> 10x 1.2 0.1

0.5x − 1x 2.1

< 0.5x 0.2

Average Speedup (Shifted GM):

Alpine+SP: 4.5x , Alpine+ML: 3.5x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 15 / 22

Numerical Results for Random QCQPs
Results for dx = 10 variables

• Generate 1000 random QCQPs with varying parameters θ
• For each instance, determine 2 optimal partitioning points per

variable by solving a max-min problem
• Eliminate optimal partitioning points that aren’t useful

0.1 0.2 0.5 1 2 3
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so

lv
ed

 w
it
hi

n
ti
m

e
T

dx=10

Default
SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 2x 1.1 7.7

2x − 3x 10.2 11.4

3x − 5x 47.4 38.5

5x − 10x 40.1 40.0

> 10x 1.2 0.1

0.5x − 1x 2.1

< 0.5x 0.2

Average Speedup (Shifted GM):

Alpine+SP: 4.5x , Alpine+ML: 3.5x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 15 / 22

Numerical Results for Random QCQPs
Results for dx = 20 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2/4 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful

0.5 2 5 20 50 200
Time T (seconds)

0

20

40

60

80

100

%
 in
st
an
ce
s
so
lv
ed
 w
it
hi
n
ti
m
e
T

dx=20

Default
SP
ML
SP4

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 3x 13.1 48.7

3x − 5x 12.3 16.0

5x − 10x 31.2 15.3

10x − 20x 29.9 6.0

> 20x 10.0 0.9

0.5x − 1x 3.3 9.8

< 0.5x 0.2 3.3

Average Speedup (Shifted GM):

Alpine+SP: 5.1x , Alpine+ML: 2.1x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 16 / 22

Numerical Results for Random QCQPs
Results for dx = 20 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2/4 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful

0.5 2 5 20 50 200
Time T (seconds)

0

20

40

60

80

100

%
 in
st
an
ce
s
so
lv
ed
 w
it
hi
n
ti
m
e
T

dx=20

Default
SP
ML
SP4

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 3x 13.1 48.7

3x − 5x 12.3 16.0

5x − 10x 31.2 15.3

10x − 20x 29.9 6.0

> 20x 10.0 0.9

0.5x − 1x 3.3 9.8

< 0.5x 0.2 3.3

Average Speedup (Shifted GM):

Alpine+SP: 5.1x , Alpine+ML: 2.1x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 16 / 22

Numerical Results for Random QCQPs
Results for dx = 20 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2/4 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful

5 20 50 200 500 20005000
Gap reduction factor (1st iteration)

0

10

20

30

40

50

60

70

%
 o

f i
ns

ta
nc

es

dx=20
Default/SP
Default/ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 3x 13.1 48.7

3x − 5x 12.3 16.0

5x − 10x 31.2 15.3

10x − 20x 29.9 6.0

> 20x 10.0 0.9

0.5x − 1x 3.3 9.8

< 0.5x 0.2 3.3

Average Speedup (Shifted GM):

Alpine+SP: 5.1x , Alpine+ML: 2.1x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 17 / 22

Numerical Results for Random QCQPs
Results for dx = 50 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful

2 5 20 50 200 500 2000 7200
Time T (seconds)

0

20

40

60

80

100

%
 in
st
an
ce
s
so
lv
ed
 w
it
hi
n
ti
m
e
T

dx=50
Default
SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 5x 25.7 49.3

5x − 10x 26.3 25.3

10x − 20x 24.3 13.7

20x − 50x 14.9 5.4

> 50x 6.9 0.8

0.5x − 1x 1.5 4.8

< 0.5x 0.4 0.7

Average Speedup (Shifted GM):

Alpine+SP: 8.1x , Alpine+ML: 4.2x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 18 / 22

Numerical Results for the Pooling Problem [LdLS20]
Inputs Pools Outputs • 45 sources, 15 pools, 30 terminals, 1 quality

(124/572 variables part. in 261 bilinear terms)

• 1000 random instances with θ = input qualities

• 2 partitioning points per variable (total 124× 2)

• Feature dimension: 667, Output dimension: 248

2 5 20 50 200 500 2000 7200
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so
lv
ed

 w
it
hi
n
ti
m
e
T Default

SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 3x 29.1 53.9

3x − 5x 16.1 21.5

5x − 10x 21.7 10.4

10x − 20x 20.3 1.6

> 20x 6.2 0.1

0.5x − 1x 4.5 1.7

< 0.5x 2.1 10.8

Average Speedup (Shifted GM):

Alpine+SP: 3.9x , Alpine+ML: 2.2x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 19 / 22

Numerical Results for the Pooling Problem [LdLS20]
Inputs Pools Outputs • 45 sources, 15 pools, 30 terminals, 1 quality

(124/572 variables part. in 261 bilinear terms)

• 1000 random instances with θ = input qualities

• 2 partitioning points per variable (total 124× 2)

• Feature dimension: 667, Output dimension: 248

2 5 20 50 200 500 2000 7200
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so
lv
ed

 w
it
hi
n
ti
m
e
T Default

SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 3x 29.1 53.9

3x − 5x 16.1 21.5

5x − 10x 21.7 10.4

10x − 20x 20.3 1.6

> 20x 6.2 0.1

0.5x − 1x 4.5 1.7

< 0.5x 2.1 10.8

Average Speedup (Shifted GM):

Alpine+SP: 3.9x , Alpine+ML: 2.2x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 19 / 22

Numerical Results for the Pooling Problem [LdLS20]
Inputs Pools Outputs • 45 sources, 15 pools, 30 terminals, 1 quality

(124/572 variables part. in 261 bilinear terms)

• 1000 random instances with θ = input qualities

• 2 partitioning points per variable (total 124× 2)

• Feature dimension: 667, Output dimension: 248

2 5 20 50 200 500 2000 7200
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so
lv
ed

 w
it
hi
n
ti
m
e
T Default

SP
ML

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 3x 29.1 53.9

3x − 5x 16.1 21.5

5x − 10x 21.7 10.4

10x − 20x 20.3 1.6

> 20x 6.2 0.1

0.5x − 1x 4.5 1.7

< 0.5x 2.1 10.8

Average Speedup (Shifted GM):

Alpine+SP: 3.9x , Alpine+ML: 2.2x

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 19 / 22

Conclusion

• Strong Partitioning can reduce Alpine’s solution time by
4x − 9x on average

• Strong Partitioning can reduce Alpine’s first iteration gap by
more than three orders of magnitude!

• Off-the-shelf ML model can improve Alpine’s run time by
2x − 4.5x on average

Future Work:

• Techniques for sparse partitioning

• Train more advanced ML models

• Extension to broader optimization classes, including
mixed-integer problems

• Explore application to AC-OPF

Questions? rohitk@alum.mit.edu

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 20 / 22

Conclusion

• Strong Partitioning can reduce Alpine’s solution time by
4x − 9x on average

• Strong Partitioning can reduce Alpine’s first iteration gap by
more than three orders of magnitude!

• Off-the-shelf ML model can improve Alpine’s run time by
2x − 4.5x on average

Future Work:

• Techniques for sparse partitioning

• Train more advanced ML models

• Extension to broader optimization classes, including
mixed-integer problems

• Explore application to AC-OPF

Questions? rohitk@alum.mit.edu

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 20 / 22

References I
[ALW17] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based

approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

[BLBMT19] Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tramontani. Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks. preprint:
http://www. optimization-online. org/DB HTML/2018/11/6943. html, 2019.

[BLZ18] Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classification of mixed-integer
quadratic programming problems. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 595–604. Springer, 2018.

[BST09] Xiaowei Bao, Nikolaos V Sahinidis, and Mohit Tawarmalani. Multiterm polyhedral relaxations for
nonconvex, quadratically constrained quadratic programs. Optimization Methods & Software,
24(4-5):485–504, 2009.

[CNB+22] Fatih Cengil, Harsha Nagarajan, Russell Bent, Sandra Eksioglu, and Burak Eksioglu. Learning to
accelerate globally optimal solutions to the AC Optimal Power Flow problem. Electric Power
Systems Research, 212:108275, 2022.

[GCF+19] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. arXiv preprint
arXiv:1906.01629, 2019.

[GGCGD+22] Bissan Ghaddar, Ignacio Gómez-Casares, Julio González-D́ıaz, Brais González-Rodŕıguez, Beatriz
Pateiro-López, and Sof́ıa Rodŕıguez-Ballesteros. Learning for spatial branching: An algorithm
selection approach. arXiv preprint arXiv:2204.10834, 2022.

[GRAPAP+22] Brais González-Rodŕıguez, Raúl Alvite-Pazó, Samuel Alvite-Pazó, Bissan Ghaddar, and Julio
González-D́ıaz. Polynomial optimization: Enhancing RLT relaxations with conic constraints. arXiv
preprint arXiv:2208.05608, 2022.

[KLBS+16] Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

[LdLS20] James Luedtke, Claudia d’Ambrosio, Jeff Linderoth, and Jonas Schweiger. Strong convex nonlinear
relaxations of the pooling problem. SIAM Journal on Optimization, 30(2):1582–1609, 2020.

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 21 / 22

References II

[NBG+20] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[NBL+11] Giacomo Nannicini, Pietro Belotti, Jon Lee, Jeff Linderoth, François Margot, and Andreas
Wächter. A probing algorithm for MINLP with failure prediction by SVM. In International
Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pages 154–169. Springer, 2011.

[NLW+19] Harsha Nagarajan, Mowen Lu, Site Wang, Russell Bent, and Kaarthik Sundar. An adaptive,
multivariate partitioning algorithm for global optimization of nonconvex programs. Journal of
Global Optimization, 74(4):639–675, 2019.

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 22 / 22

	References

