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Motivation

Many important applications can be formulated as nonconvex QCQPs

AC Optimal Power Flow

Image Source: IEEE Innovation at Work

The Pooling Problem
Inputs Pools Outputs

Often, wish to repeatedly solve instances of the same nonconvex
problem with different data, e.g., loads, wind, qualities, prices

Can we exploit shared structure to accelerate global solution?
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Heuristics can have a huge impact on global solvers

Alpine [NLW+19] is a Julia-based open-source global solver
developed at LANL for mixed-integer polynomial optimization

It has a key algorithmic parameter “PSF” (default PSF = 10)
PSF = Partition Scaling Factor. More on this parameter later...

Best choice of PSF can vary depending on instance

Alpine on three random QCQPs

PSF 4 10 15
Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Note: Alpine converges irrespective of
the choice of PSF
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Optimal PSF wrt solution time

In general, how to optimally specify a solver’s heuristic parameters
for a given instance? Heuristics usually tuned to work well on average
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Related Work: Learning to Branch for MIPs

(MIP) min
x ,y

cTx + dTy

s.t. Ax + By ≤ b,

x ≥ 0, y ∈ {0, 1}dy

N0

N1

N3 N4

N5 N6

N2

y7 = 0

y2 = 0 y2 = 1

y5 = 0 y5 = 1

y7 = 1

• Order of branching decisions can be critical to ensuring that
the size of the branch-and-bound tree doesn’t explode
How to choose branching order?

• Strong Branching to choose branching variable at node
1 Try branching on all candidate y ’s, e.g. at N4: y1, y4, y5, y10

2 Branch on yi∗ to maximize the lower bound on the child nodes

Empirically reduces number of nodes in B&B tree by 65% on
average, but increases cost per node by 44%

• Several recent works use ML to compute cheap proxy of strong
branching for MILPs [ALW17, KLBS+16, GCF+19, NBG+20]
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Related Work: Learning for (MI)NLPs

• Baltean-Lugojan et al. [BLBMT19] use neural networks (NNs)
to decide how to construct cheap outer-approximations of
SDP relaxations of QCQPs that retain their strength

• Ghaddar et al. [GGCGD+22, GRAPAP+22] use quantile
regression forests to choose a branching strategy within the
reformulation-linearization technique for polynomial programs

• Bonami et al. [BLZ18] learn a classifier to decide whether to
linearize binary-binary or binary-continuous products in MIQPs

• Nannicini et al. [NBL+11] train an SVM classifier to predict
whether to use an expensive bound tightening procedure
instead of feasibility-based bound tightening for MINLPs

• Cengil et al. [CNB+22] train DNNs to choose a subset of
variables on which to apply optimality-based bounds tightening
for AC Optimal Power Flow
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Global Optimization of QCQPs

Consider the following class of QCQPs:

ν∗ := min
x ,w

cTx + dTw

s.t. wij = xixj , ∀(i , j) ∈ B,
Ax + Bw ≤ b, x ∈ [−1, 1]dx

• The bilinear constraints are what make the problem hard

−1 −0.5 0 0.5 1 −1
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ν∗ := min
x ,w

cTx + dTw

s.t. wij = xixj , ∀(i , j) ∈ B,
Ax + Bw ≤ b, x ∈ [−1, 1]dx

• The bilinear constraints are what make the problem hard

• Get feasible solutions/upper bounds using local optimization

• Obtain lower bounds on ν∗ using relaxations

Rohit Kannan Learning to Solve QCQPs using Alpine November 13, 2022 6 / 22



Relaxing Bilinear Terms
The feasible region of the hard bilinear constraints

wij = xixj , xi , xj ∈ [−1, 1] (1)

is a subset of the feasible region of the easy linear constraints
−xi − xj − 1≤ wij ≤ xi − xj + 1,

xi + xj − 1≤ wij ≤ xj − xi + 1, (2)

xi , xj ∈ [−1, 1]

Replace bilinear constraints (1) in the QCQP with
McCormick Relaxations (2) to determine a valid lower bound

ν∗ ≥ νM := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

−xi − xj − 1 ≤ wij ≤ xi − xj + 1, ∀(i , j) ∈ B,
xi + xj − 1 ≤ wij ≤ xj − xi + 1, ∀(i , j) ∈ B,
x ∈ [−1, 1]dx

Typically νM � ν∗. Close the gap using continuous B&B
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Tighten Relaxations By Partitioning Variable Domains

• Partition variable domains into “disjoint” subintervals, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5, 1]

• Construct Piecewise McCormick Relaxations on the variable
partitions and solve a MIP to obtain lower bound

ν∗ ≥ νPMR := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

where pi is the vector of partitioning points for xi
• Refine variable partitions, e.g.,

x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1,−0.5] OR [−0.5,−0.2] OR [−0.2, 1]
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The Lower Part of the Piecewise McCormick Relaxations

Partitions: x1 ∈ [−1, 0] OR [0, 1], x2 ∈ [−1, 0] OR [0, 1]

−1 −0.5 0 0.5 1 −1
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0
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w
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Both the number AND choice of partitioning points influence
number of iterations for Alpine to converge
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How Does Alpine Pick Partitioning Points?
Recall: Alpine has a key algorithmic parameter “PSF” (default PSF = 10)

Best choice of PSF can vary depending on instance
PSF 4 10 15

Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Alpine’s strategy: refine partitions around a nominal point x̄ (e.g.,
around a feasible solution or solution to relaxation)

• Example: if x̄ = (0.3, 0) and parameter PSF = 4

−1 10.3
( )

−0.2 0.8x̄1

width =
1−(−1)

PSF

−1 10
( )

−0.5 0.5x̄2

Although there are some empirical and theoretical motivations for
the above partitioning strategy, it is still quite ad hoc

Can we choose better partitioning points to promote faster convergence?
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Strong Partitioning (SP) to Improve Choice of Partitions

New Approach: Choose partitioning points to maximize the lower bound

p∗ ∈ arg max
p∈P

νPMR(p),

• pi is the vector of partitioning points for xi

νPMR(p) := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

• From iteration 2, use Alpine’s partitioning strategy
(guaranteed to converge irrespective of points chosen by SP)

How to solve this max-min problem (locally)? Using sensitivity analysis

Solving this max-min problem may be as hard as solving the QCQP!
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Using ML to Accelerate Alpine
Given family of random QCQPs of the form [BST09]

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Parameters θ vary from one instance to the next

Input: underlying problem, distribution of parameters θ
Output: ML model that predicts partitioning points given θ̄

• Generate N training samples {θi} of the problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄
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Using ML to Accelerate Alpine
Input: underlying problem, distribution of parameters θ

Output: ML model that predicts partitioning points given θ̄

• Generate 1000 training samples {θi} of problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Use Scikit-learn’s AdaBoostRegressor to train Regression Trees
with max depth = 25, num estimators = 1000 (no tuning!)
• Features for training and prediction:

I Parameter θ
I Best found feasible solution during presolve (one local solve)
I McCormick lower bounding solution (no partitioning)

• Use 10-fold cross validation to generate predictions for {θi}
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Numerical Experiments on Random QCQPs

Consider random QCQPs of the form [BST09]

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Parameters θ vary from one instance to the next

Consider instances with

• dx ∈ {10, 20, 50} variables

• 5dx bilinear terms (45 for dx = 10)

• dx bilinear inequalities

• dx/5 linear equalities
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Numerical Results for Random QCQPs
Results for dx = 10 variables

• Generate 1000 random QCQPs with varying parameters θ
• For each instance, determine 2 optimal partitioning points per

variable by solving a max-min problem
• Eliminate optimal partitioning points that aren’t useful
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Numerical Results for Random QCQPs
Results for dx = 20 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2/4 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful
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Numerical Results for Random QCQPs
Results for dx = 20 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2/4 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful
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Numerical Results for Random QCQPs
Results for dx = 50 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful
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Numerical Results for the Pooling Problem [LdLS20]
Inputs Pools Outputs • 45 sources, 15 pools, 30 terminals, 1 quality

(124/572 variables part. in 261 bilinear terms)

• 1000 random instances with θ = input qualities

• 2 partitioning points per variable (total 124× 2)

• Feature dimension: 667, Output dimension: 248
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Conclusion

• Strong Partitioning can reduce Alpine’s solution time by
4x − 9x on average

• Strong Partitioning can reduce Alpine’s first iteration gap by
more than three orders of magnitude!

• Off-the-shelf ML model can improve Alpine’s run time by
2x − 4.5x on average

Future Work:

• Techniques for sparse partitioning

• Train more advanced ML models

• Extension to broader optimization classes, including
mixed-integer problems

• Explore application to AC-OPF

Questions? rohitk@alum.mit.edu
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