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Motivation
Clustering in Unconstrained Optimization

¢ Unconstrained minimization of

(4 - 21x2 + (x*)13) x% + xy + (-4 + 4y?) y?
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Motivation
Clustering in Constrained Optimization

min y* -12x-7y
X,y

st y+2x*-2=0,
xe[0,2], y €][0,3].

Floudas, C. et al., Springer, 1999.
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min —x-y
X,y

s.t. y<2+42x* —8x>+8x?,
y <4x* —32x° +88x° — 96X + 36,
x€[0,3], y €[0,4].
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Definitions

¢ Width of an interval

Let Z =[z,z ]x---x[z5,2 ] IR".

n’en

The width of Z is given by w(Z) = _r_Tax(in -z").

w(Z)

Bompadre, A. et al., J. Global Optim., 2012.



i
Definitions

¢ Width of an interval

Let Z =[z,z ]x---x[z5,2 ] IR".

n’en

The width of Z is given by w(Z) = _r_Tax(in -z").

¢ Schemes of relaxations

Nonempty, bounded set X < R", functionh: X — R.

5

w(Z)

For each interval Z € IX, define convex relaxation h;” : Z — R, concave relaxation h* : Z — R,

defines a scheme of convex relaxations of h in X.
ZelX

(h")
()

defines a scheme of concave relaxations of h in X.
ZelX

Bompadre, A. et al., J. Global Optim., 2012.
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i
Definitions

¢ Hausdorff metric

Suppose X =[x",x"1,Y =[y",y"] IR are two intervals.

Hausdorff metric q(X,Y) = maxﬂxL - yLHxU —yY ‘}

5
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¢ Hausdorff metric
Suppose X =[x",x"1,Y =[y",y"] IR are two intervals.
Hausdorff metric q(X,Y) = maxﬂxL —yt| [x¥ =y ‘}

¢ Inclusion function

h:R" > X — R continuous.

Image of Z < X under h: h(Z):=[h*(2),h"(2) .

H:IX o X — IR is an inclusion function for h on X if
h(Z)cH(Z),VZ e X.

— h(2)
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Mir [
Hausdorff Convergence

¢ Hausdorff Convergence Order

h:R" > X — R continuous, H inclusion function of h on IX.

H has Hausdorff convergence of order f#>0o0n X if 37 >0s.t. VZ €1X,
a(h(Z),H(2)) <7w(Z)".

> q(h(Z),H(Zy)

q(Xx,Y):= max{‘xL - yLHxU — yu‘}.

Bompadre, A. et al., J. Global Optim., 2012.
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Mir [
Pointwise Convergence

¢ Pointwise Convergence Order

h:R" > X — R continuous, (h;",h;")|,  scheme of relaxations of h in X.

(h;". h;’)

o has pointwise convergence of order y >0 on X if 37 >0s.t. VZ €IX,

sup|h(x) - hg' (X)| < zw(Z)’,

xeZ

sup|h(x) - hs* (x)| < w(Z)".

xeZ

Bompadre, A. et al., J. Global Optim., 2012.



Mir L.
Propagation of convergence orders

¢ y-order pointwise convergence of a scheme of relaxations
iImplies (y <)B-order Hausdorff convergence of the scheme

Bompadre, A. et al., J. Global Optim., 2012. Scholz, D., J. Global Optim., 2012.
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Propagation of convergence orders

¢ y-order pointwise convergence of a scheme of relaxations
iImplies (y <)B-order Hausdorff convergence of the scheme

¢ Envelopes and aBB relaxations have second-order pointwise
convergence for €? functions

Bompadre, A. et al., J. Global Optim., 2012. Scholz, D., J. Global Optim., 2012.



Mir =L
Propagation of convergence orders

¢ y-order pointwise convergence of a scheme of relaxations
iImplies (y <)B-order Hausdorff convergence of the scheme

¢ Envelopes and aBB relaxations have second-order pointwise
convergence for €? functions

¢ Natural interval extensions have first-order pointwise
convergence for Lipschitz continuous functions

¢ Centered forms have second-order Hausdorff convergence for
Cc! functions

Bompadre, A. et al., J. Global Optim., 2012. Scholz, D., J. Global Optim., 2012.



IMir L

Propagation of convergence orders

Convergence order of factors  Convergence order of operation result

Sum: g(z) = g1(z) + g2(2)
Schemes for g; have 3; # =1 (no order propagation)
Schemes for g; have ~; v 2 min{yy, 72}

Product: g(z) = ¢1(2) - g2(2)
Schemes for g; have [3; £ = 1 (no order propagation)
Schemes for g; have ~; ¥ = min{’}’l, J2, 2}

Composition: g(z) = F' o f(z)

Scheme for F has 8 A > min{fr, Br1}
Inclusion for f has Sy r
Scheme for F' has vyp v = min{yr, v¢}

Scheme for [ has vy

Bound on convergence order of McCormick estimators assuming Lipschitz continuity of the factors

Bompadre, A. et al., J. Global Optim., 2012. Bompadre, A. et al., J. Global Optim., 2013.
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More Definitions

¢ Distance between sets

LetY,Z cR".
The distance between Y and Z is defined as
d(Y,2)=inf|y-z|.

yeyY,
zeZ

5



More Definitions

¢ Distance between sets

LetY,Z cR".
The distance between Y and Z is defined as
d(Y,2)=inf|y-z|.

yeyY,
zeZ

¢ Convergence and Pointwise Convergence

h:R" > X — R continuous, (h;")

o scheme of convex relaxations of h on X.
€

o has convergence of order #>0on X if37>0s.t. VZ €IX,

().,
inf h(x) —inf he' (x) <tw(Z)”.

(hz)

o has pointwise convergence of order y >0 on X if 37 >0 s.t. VZ €1X,

sup|h(x) —hg" ()| < 7w(Z)’.

xeZ



i
Formulation

min f (X)

xeX
s.t. g(x) <0,
h(x) =0,
where X < R" is a nonempty compact convex set,
f:X—>R,g: X —>R™,h: X — R™ are continuous.

5



Mir
Definition of Convergence Order

¢ Convergence order of a lower bounding scheme

Forany Z eIX, let F(Z):={xe Z:g(x) <0,h(x) =0} denote the feasible set
of the problem with x restricted to Z.

5



Definition of Convergence Order

¢ Convergence order of a lower bounding scheme

Forany Z eIX, let F(Z):={xe Z:g(x) <0,h(x) =0} denote the feasible set
of the problem with x restricted to Z.

denote a scheme of lower bounding problems.
a scheme of triples (O(2),Z,(Z),Z. (2))| where

ZelX !

Let (£(2)),..,
Associate with (£(Z))|
(O(Z))|Z€HX is a scheme of lower bounds,

(Z,(2))

ZelX

sy and (Zg (Z))|Z€Hx are schemes of subsets of R™ and R™, respectively, satisfying
d(Z,(2),R™) <d(g(2),R™),
d(Z.(2),{0}) <d(h(Z),{0}), and
O(Z) =+ < d(Z,(Z),R™)>0o0rd(Z.(2),{0}) >0, VZ € IX.

5
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Definition of Convergence Order

¢ Convergence order of a lower bounding scheme

(L£(Z))],.,, :lower bounding scheme.
(O(2))|,., :scheme of lower bounds.
(Z, (Z))|de : scheme estimating feasibility of inequality constraints.

(Z: (Z))|de : scheme estimating feasibility of equality constraints.



Definition of Convergence Order

¢ Convergence order of a lower bounding scheme

(L£(Z))],.,, :lower bounding scheme.

(O(2))|,., :scheme of lower bounds.

(Z, (Z))|de : scheme estimating feasibility of inequality constraints.
(Z: (Z))|de : scheme estimating feasibility of equality constraints.

The lower bounding scheme (C(Z))| Is said to have convergence of order £ >0 at

ZelX

1. a feasible pointxe X if 37 >0s.t. VZ €IX withxe Z,
min f(z2)-O(Z2)<tw(Z)”.

zeF(Z)

2. an infeasible pointx e X if 37 >0s.t. VZ €IX withxe Z,
d(g(z),R™)-d(Z, (2),R™)<7w(Z)”, and
d(h(2), {O}) —-d(Z:.(2), {0}) <TW(Z)”.

5



IMir L

Definition of Convergence Order

¢ Convergence order of a lower bounding scheme

(L£(Z))],.,, :lower bounding scheme.
(O(2))|,., :scheme of lower bounds.
(Z, (Z))|de : scheme estimating feasibility of inequality constraints.
(Z: (Z))|de : scheme estimating feasibility of equality constraints.
The lower bounding scheme (E(Z))|Ze]lx Is said to have convergence of order £ >0 at
1. a feasible pointxe X if 37 >0s.t. VZ €IX withxe Z,
min f(z2)-O(Z2)<tw(Z)”.

zeF(Z)

2. an infeasible pointx e X if 37 >0s.t. VZ €IX withxe Z,
d(g(z),R™)-d(Z, (2),R™)<7w(Z)”, and
d(h(2), {O}) —-d(Z:.(2), {0}) <TW(Z)”.

The lower bounding scheme has convergence of order £ on X if it has convergence
of order (at least) S at each x € X, with the constants 7,7 independent of x.
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Convergence Order
Convex relaxation-based scheme

¢ Convergence order of a lower bounding scheme

Let(f,")

and (g;")
f and g in X, and let (h,’, ;%)
hin X.

_— - denote continuous schemes of convex relaxations of

. denote a continuous scheme of relaxations of



Convergence Order
ConvexX relaxation-based scheme

¢ Convergence order of a lower bounding scheme

y denote continuous schemes of convex relaxations of

Let ( fZCV) ZelX and (g;\/) Zel
f and g in X, and Iet(hgv,h;“’)Z :
hin X.

. denote a continuous scheme of relaxations of

The convex relaxation-based lower bounding scheme is defined by
OZ) = rpeizn f(x)
s.t. g5 (x) <0,
hy¥ (x) <0,
h*(x) >0,
7,(2)=7; (2),
T.(Z) ={weR™ :hy'(z) <w<h$(z) for some z € Z}.

5



Convergence Order
ConvexX relaxation-based scheme

¢ Convergence order of a lower bounding scheme

Let(f,")

L and(gz")
f and g in X, and let (h,’, ;%)
hin X.

. denote continuous schemes of convex relaxations of

. denote a continuous scheme of relaxations of

The convex relaxation-based lower bounding scheme is defined by
OZ) = rpeizn f(x)
s.t. g5 (x) <0,
hy¥ (x) <0,
h*(x) >0,
7,(2)=7; (2),
T.(Z) ={weR™ :hy'(z) <w<h$(z) for some z € Z}.

Forany Z eIX, let 7(Z) ={xe Z:g'(x) <0,h;"(x) <0,hs*(x) 2 0} denote

the feasible set of the convex relaxation-based lower bounding scheme with
X restricted to Z.
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Convergence Order
ConveXx relaxation-based scheme

¢ Convergence order of a lower bounding scheme

Let F(Z):={xeZ:g(x)<0,h(x) =0},
F¥(Z)={xeZ:g5 (x)<0,h(x) <0,hs*(x) 2 0}.

The convex relaxation-based lower bounding scheme is said to have convergence
of order # >0 at

1. afeasible pointxe X if37>0s.t. VZ € IX withxe Z,
: _ : cv g
ZQ}I(I’Z]) f(2) Zeryclvrgz) f,'(z) <zw(Z)”.

2. an infeasible pointxe X if 37 >0 s.t. VZ € IX withxe Z,
d(@(z),R™)-d(g;'(Z2),R™) <7w(Z)”, and
d(h(2),{0})-d (1. (2).{0}) <TW(Z)”,

where (12(2))|,_,, is defined as

(@), = ({W e R™ :h¥(x) < w < h(x) for some x e Z})

ZelX
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Convergence Order
Convex relaxation-based scheme

¢ Convergence order of a lower bounding scheme
Let F(Z):={xeZ:g(x)<0,h(x) =0},
F¥(Z)={xeZ:g5 (x)<0,h(x) <0,hs*(x) 2 0}.
The convex relaxation-based lower bounding scheme is said to have convergence
of order # >0 at
_ _ _ _ “The lower bound has to
min f(z)— min % (2) <rw(Z)”. objective value with order

2eF(2) 26 F(Z) at least g”

2. an infeasible pointxe X if 37 >0 s.t. VZ € IX withxe Z,
d(@(2),R™)-d(g;'(Z),R™) <7w(Z)”, and
d(h(2),{0})-d (1. (2).{0}) <TW(Z)”,

where (12(2))|,_,, is defined as

(@), = ({W e R™ :h¥(x) < w < h(x) for some x e Z})

ZelX



N |
UIT L
Convergence Order
Convex relaxation-based scheme

¢ Convergence order of a lower bounding scheme
Let F(Z):={xeZ:g(x)<0,h(x) =0},
F¥(Z)={xeZ:g5 (x)<0,h(x) <0,hs*(x) 2 0}.
The convex relaxation-based lower bounding scheme is said to have convergence
of order # >0 at
_ _ _ _ “The lower bound has to
min f(z)— min % (2) <rw(Z)”. objective value with order

2eF(2) 26 F(Z) at least g”

2. an infeasible pointxe X if 37 >0 s.t. VZ € IX withxe Z,
“The image of constraint

— my —cv m, — B
d(@(2),R™)—-d(g; (£),RT) <7w(Z)", and relaxations has to converge

d(h(z),{0})-d(1.(2),{0}) <TwW(Z)”, (in distance) to the image of
the true constraints with
order at least p”

(@), = ({W e R™ :h¥(x) < w < h(x) for some x e Z})

where (12(2))|,_,, is defined as

ZelX
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Convergence Order at Infeasible Points

¢ Convergence order of a lower bounding scheme

g,(X) =—x* +4x-2,
g, (X) =—x* +2x+1,
90 (X) = —(x" +xV)x+ x"xY +4x -2,

95" (X) = —(x" +xV)x+ x"xY + 2x +1.
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Convergence Order at Infeasible Points

¢ Convergence order of a lower bounding scheme

9,(x) = —X* +4x-2,
g,(X) =—x*+2x+1,
97" (x) = —(x" + x”)x+ x"x" +4x-2, 9,(1.5) =9,(1.5) =1.75.

95" (X) = —(x" +xV)x+ x"xY + 2x +1.
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Convergence Order at Infeasible Points

¢ Convergence order of a lower bounding scheme

9,(x) = —X* +4x-2,
9,(X) = —X* +2x+1,
97" (x) = —(x" + x”)x+ x"x" +4x-2, 9,(1.5) =9,(1.5) =1.75.

95" (X) = —(x" +xV)x+ x"xY + 2x +1.
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Convergence Order at Infeasible Points

¢ Convergence order of a lower bounding scheme

0,(xX) = —x* +4x-2,

g,(X) = —x* +2x+1,
9," (x) = —max{(xL)2 ,(x“)2}+4x—2,

g, () = —maX{(xL)2 ,(XU)2}+2x+1.

0,(2.5)=g,(1.5)=1.75.
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Convergence Order at Infeasible Points

¢ Convergence order of a lower bounding scheme

0,(xX) = —x* +4x-2,

g,(X) = —x* +2x+1,
9," (x) = —max{(xL)2 ,(x“)2}+4x—2,

g, () = —maX{(xL)2 ,(XU)2}+2x+1.

0,(2.5)=g,(1.5)=1.75.
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Conditions for first-order convergence

¢ Sufficient conditions for first-order convergence

Theorem: Suppose
1.f,9,,j=4---,m;, and h,k =1,---,mg, are Lipschitz continuous on X.

2. The schemes (") ,(95% =1,---,m;, and (h,;,h*)

are at least first-order pointwise convergent on X.

:1’...’mE’

| k
Zelx ' J Zelx '

Then, the convex relaxation-based lower bounding scheme is at least first-order convergent on X.

N



Conditions for first-order convergence

¢ Sufficient conditions for first-order convergence

Theorem: Suppose
1.f,9,,j=4---,m;, and h,k =1,---,mg, are Lipschitz continuous on X.

2. The schemes (") ,(95% =1,---,m;, and (h,;,h*)

are at least first-order pointwise convergent on X.

:11”'lmEl

| k
Zelx ' J Zelx '

Then, the convex relaxation-based lower bounding scheme is at least first-order convergent on X.
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Conditions for first-order convergence

¢ Sufficient conditions for first-order convergence

Theorem: Suppose
1.f,9,,j=4---,m;, and h,k =1,---,mg, are Lipschitz continuous on X.

2. The schemes (") ,(95% =1,---,m;, and (h,;,h*)

are at least first-order pointwise convergent on X.

:11”'lmEl

| k
Zelx ' J Zelx '

Then, the convex relaxation-based lower bounding scheme is at least first-order convergent on X.
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Conditions for first-order convergence

¢ Sufficient conditions for first-order convergence

Theorem: Suppose
1.f,9,,j=4---,m;, and h,k =1,---,mg, are Lipschitz continuous on X.

2. The schemes (") ,(95% =1,---,m;, and (h,;,h*)

are at least first-order pointwise convergent on X.

:11”'lmEl

| k
Zelx ' J Zelx '

Then, the convex relaxation-based lower bounding scheme is at least first-order convergent on X.
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Conditions for second-order convergence

¢ Sufficient conditions for second-order convergence

Theorem: Suppose

1.f,9;,j=1---,m, and h k=1--,m, are C* on X.

2. The schemes (f;")| (95 ,j=1---,m;, and (hy7,h",)
are at least second-order pointwise convergent on X.

Then, the convex relaxation-based lower bounding scheme is at least second-order convergent at

1. x e X for which 3(¢, 4) e RT' xR™ such that (x, x, 1) is a KKT point

2.x e X with g(x) <0 (when m. =0)

3. infeasible x € X

lkzll‘..’mEl

ZelX ZelX
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Conditions for second-order convergence

¢ Sufficient conditions for second-order convergence

Theorem: Suppose

1.f,9;,j=1---,m, and h k=1--,m, are C* on X.

2. The schemes (f;*)| (9}, , J=1---,m;, and (h%,h>,)
are at least second-order pointwise convergent on X.

Then, the convex relaxation-based lower bounding scheme is at least second-order convergent at

1. x e X for which 3(¢, 4) e RT' xR™ such that (x, x, 1) is a KKT point

!kzll‘..lmEl

ZelX ZelX

2. x e X with g(x) <0 (when m_ =0) 3
3. infeasible x € X 2
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Reduced-Space B&B Formulation

min f(Xx,y)

(X,y)eXxY
h(x,y) =0,
where X < R™,Y < R"™ are nonempty compact convex sets,

f:XxY >R, g: XxY—->R™ h:XxY —R"™ are continuous, and
f(-,y)and g(,y) are convex on X and h(., y) is affine on X foreachyeY.

¢ Some widely-applicable reduced-space B&B algorithms are

» Ddar’s Lagrangian duality-based B&B algorithm (2001)

» Epperly and Pistikopoulos’ convex relaxation-based B&B algorithm for

problems with special structures (1997)

Dir, M., Math. Program., 2001.

Epperly, T. G. W. and Pistikopoulos, E. N., J. Global Optim., 1997.
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Reduced-Space Convergence Order

¢ Convergence order of a lower bounding scheme

Forany Z e IX, let F(Z) ={(x,y) e XxZ :g(x,y) <0,h(x,y) =0} denote the feasible set
of the problem with y restricted to Z.

Let (L(Z))|ZE]IY denote a scheme of lower bounding problems.
Associate with (£(Z))|, ., ascheme of triples (O(2),Z,(Z),Z.(2))|

(O(Z))|zeﬂv is a scheme of lower bounds,

where

ZelY ZelY '’

(Z, (Z))|Zd[Y and (Z: (Z))|Z€HY are schemes of subsets of R™ and R™, respectively, satisfying
d(Z,(Z2),R™) <d(g(X xZ),R™),
d(Z.(2),{0}) <d(h(X xZ),{0}), and
O(Z)=+w < d(Z,(Z),R™)>00rd(Z.(2),{0}) >0, VZ 1Y.
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Reduced-Space Convergence Order

¢ Convergence order of a lower bounding scheme

(L£(Z))],.,, :lower bounding scheme.

(O(2))|,.., :scheme of lower bounds.

(Z, (Z))|Z€HY : scheme estimating feasibility of inequality constraints.
(Z: (Z))|Zd[Y : scheme estimating feasibility of equality constraints.

The lower bounding scheme (E(Z))| is said to have convergence of order £ >0 at

ZelY

1. a feasible pointy eY if 37 >0s.t. VZ eIY withy e Z,
min  f(x,2)-O(Z) <tw(Z)”.

(x,2)eF(2)

2. an infeasible pointy €Y if 37 >0s.t. VZ elY withye Z,
d(g(XxZ),R™)-d(Z,(2),R™)<7w(Z)”, and
d(h(X x Z),{0})—d(Z.(2),{0}) < TW(Z)”.

The lower bounding scheme has convergence of order S on Y if it has convergence
of order (at least) S at each y €Y, with the constants 7,7 independent of y.
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'h\n argument for constraint propagatio
IN reduced-space B&B algorithms

1

¢ Consider solving min —xy
X,y

s.t. x+y<l1,
xe[-L11], y €[0,1].
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'h\n argument for constraint propagatio
IN reduced-space B&B algorithms

1

¢ Consider solving min —xy
X,y

s.t. x+y<l1,
xe[-11], y €[0,1].

via myin v(y)
s.t. ye[0,1].
where
v(y)=min —xy | : |
s.t. x<1-vy,

X e[-11].
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'h\n argument for constraint propagatio
IN reduced-space B&B algorithms

& Consider solving min —xy T
x e[-1,1], y €[0,1]. | e \
y S
via min v(y)
y
s.t. ye[0,1].
where
v(y)=min —xy *
s.t. x<1-vy, 04T
xe[-11. .|
V(y).[, |
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h\n argument for constraint propagation

IN reduced-space B&B algorithms

1

¢ Consider solving min —xy
X,y

s.t. x+y<l1,
xe[-L11], y €[0,1].

0.5

via min v(y) e —
s.t. ye[0,1].
where
v(y) = mxin — Xy D: ) : : |
s.t. x<1-vy, o4r
xe[-11]. |

0.2

01

The algorithms of Epperly and Pistikopoulos "o
and Dur are first-order convergent I
on Y in the absence of constraint 0l
propagation, and will result in clustering. 0.4r

0.5

0.2
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Issues In reduced-space B&B algorithms

Consider the unconstrained problem
min 2x* + x>y —xy* + (y —0.5)?
X,y
s.t. xe[-11], y<€[0,1]
and the corresponding reduced-space lower bounding scheme (Epperly and Pistikopoulos)

min 2x* +Ww, + W, +(y—0.5)°
X,y

st ow, > Xy, W, >y +xyY —yY,
w2yt =x (v () (y ) () (v ) x(y ) ()
xe[-11],y e[y, y"].
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Issues In reduced-space B&B algorithms

Consider the unconstrained problem
min 2x* + x>y —xy* + (y —0.5)?
X,y
s.t. xe[-11], y€[0,1]
and the corresponding reduced-space lower bounding scheme (Epperly and Pistikopoulos)

min 2x* +Ww, +W, + (y—0.5)°
X,y

st.ow, > x°y, W, >y +xyY -y,
w2yt =x (v () (y ) () (v ) x(y ) ()
xe[-11],y e[y, y"].
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Summary

¢

lllustrated the cluster problem (or lack thereof) in constrained
optimization as motivation for convergence order analysis

Proposed a notion of convergence order for lower bounding
schemes for constrained problems

Established sufficient conditions for first-order and second-
order convergence of convex relaxation-based lower bounding
schemes

Highlighted limitations in widely applicable reduced-space
branch-and-bound algorithms

» Demonstrated the importance of constraint propagation towards mitigating
the cluster problem
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