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Motivation: Hydrothermal Scheduling

min
T∑
t=1

btqt + ctqt + gtvt
}
generation & spillage costs

s.t. ht = ht−1 + ξt − pt + ut − vt , ∀t
}
reservoir balance

αpt + qt = dt , ∀t
}
meet power demand

0 ≤ ht ≤ hmax, pt , qt , vt , ut ≥ 0, ∀t

▶ ht : amount of water in the reservoir at stage t

▶ ξt : uncertain amount of rainfall at stage t
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Outline

1 Data-driven two-stage stochastic optimization

2 Multi-stage stochastic optimization on time series
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Prelude: Two-Stage Stochastic Programming

• Traditional two-stage SP: minimize expected system cost
assuming distribution of random vector Y known

min
z∈Z

EY [c(z ,Y )]

• Sample Average Approximation: given samples {y i}ni=1 of Y

min
z∈Z

EY [c(z ,Y )] ≈ min
z∈Z

1

n

n∑
i=1

c(z , y i )

• SAA theory: optimal value and solutions converge as n → ∞

Can we use covariates/features to better predict the random vector Y ?
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Stochastic Programming with Covariate Information

Power Grid Scheduling

Y : Load; Renewable energy outputs

X : Weather observations; Time/Season

z : Generator scheduling decisions

Production Planning/Scheduling

Y : Product demands; Prices

X : Seasonality; Web search results

z : Production and inventory decisions

• Given historical data on uncertain parameters and covariates

Dn := {(y i , x i )}ni=1

• When making decision z , we observe a new covariate X = x

• Goal: minimize expected cost given covariate observation x :

min
z∈Z

E [c(z ,Y ) | X = x ]
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Stochastic Programming with Covariate Information

• Assume we have uncertain parameter and covariate data pairs

Dn := {(y i , x i )}ni=1

• When making decision z , we observe a new covariate X = x

• Goal: minimize expected cost given covariate observation x :

min
z∈Z

E [c(z ,Y ) | X = x ]

• Challenge: Dn may not include covariate observation X = x

• How to construct data-driven approximation to conditional SP?

1 Learn: predict Y given X = x

2 Optimize: integrate learning into optimization (with errors)

• Assume Y = f ∗(X ) + Q∗(X )ε with X and ε independent
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Separate Learning and Optimization

1 Use data to train our favorite ML prediction model:

f̂n(·) ∈ argmin
f (·)∈F

n∑
i=1

ℓ(f (x i ), y i ) + ρ(f )

2 Given observed covariate X = x , use point prediction within
deterministic optimization model

min
z∈Z

c(z , f̂n(x))

• Modular: separate learning and optimization steps

• Expect to work well if (and likely only if) prediction is accurate

• Does not yield asymptotically consistent solutions
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Integrated Learning and Optimization

Approach 1: Modify the learning step1

• Change loss function in ML training step to reflect use of
prediction within optimization model

• More challenging training problem + less modular

Approach 2: Modify the optimization step2

• Change optimization model to reflect uncertainty in prediction

Approach 3: Direct solution learning3

• Attempt to directly learn a mapping from x to a solution z

• Handling constraints and large dimensions of z is challenging

1Kao et al. [2009], Donti et al. [2017], Elmachtoub and Grigas [2017]
2Ban et al. [2018], Bertsimas and Kallus [2020], Deng and Sen [2022]
3Ban and Rudin [2018], Bertsimas and Kallus [2020]
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Empirical Residuals-based Sample Average Approximation
Approach (Deng and Sen [2022],Ban et al. [2018],K. et al. [2020a])

1 Use data to train our favorite ML prediction model ⇒ f̂n, Q̂n

f̂n(·) ∈ argmin
f (·)∈F

1

n

n∑
i=1

∥y i − f (x i )∥2

Compute empirical residuals ε̂in := [Q̂n(x
i )]−1

(
y i − f̂n(x

i )
)
, i ∈ [n]

2 Use {f̂n(x) + Q̂n(x)ε̂
i
n}ni=1 as proxy for samples of Y given X = x

min
z∈Z

1

n

n∑
i=1

c(z , f̂n(x) + Q̂n(x)ε̂
i
n) (ER-SAA)

• Convergence conditions and rates: K. et al. [2020a]

• DRO extension: K. et al. [2020b]

• Can we extend approach to multi-stage case, particularly
given a single historical sequence of data?
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Outline

1 Data-driven two-stage stochastic optimization

2 Multi-stage stochastic optimization on time series
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Multistage Stochastic Optimization

Complexity of multi-stage stochastic programs can grow
significantly with the number of stages T!

Stochastic Dual Dynamic Programming (Pereira and Pinto [1991]):
Exploit recombining scenario tree structure to limit number of
value functions that need to be approximated.
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Multistage Stochastic Optimization

• Decision Process: z1 ⇝ ξ2 ⇝ z2 ⇝ · · · ξT ⇝ zT

At stage t, solve

min
zt∈Zt(zt−1,ξt)

cost of decisions zt
in current stage t + expected cost of decisions zt

in future stages given history (ξ1,...,ξt)

• Assume time series model: ξt = f ∗(ξt−1) + Q∗(ξt−1)εt
• Goal: Given a single historical trajectory of {ξt}

Dn :=
{
ξ̃0, ξ̃1, · · · , ξ̃n

}
estimate optimal first-stage decision z1

Rohit Kannan Data-Driven Multi-Stage Stochastic Optimization July 28, 2022 11 / 30



Multistage Stochastic Optimization

• Decision Process: z1 ⇝ ξ2 ⇝ z2 ⇝ · · · ξT ⇝ zT

At stage t, solve

min
zt∈Zt(zt−1,ξt)

cost of decisions zt
in current stage t + expected cost of decisions zt

in future stages given history (ξ1,...,ξt)

• Assume time series model: ξt = f ∗(ξt−1) + Q∗(ξt−1)εt
• Goal: Given a single historical trajectory of {ξt}

Dn :=
{
ξ̃0, ξ̃1, · · · , ξ̃n

}
estimate optimal first-stage decision z1

Rohit Kannan Data-Driven Multi-Stage Stochastic Optimization July 28, 2022 11 / 30



Related work

Bertsimas et al. [2022]:

• Assume given an i.i.d. set of historical sample paths

• Construct RO model with uncertainty sets around sample paths

• Show asymptotic convergence as number of sample paths grows

• Solve using decision rule approximations

• Related: Ban et al. [2018], Bertsimas and McCord [2019],
Bertsimas et al. [2019]

Silva et al. [2021]:

• Assume single historical sample path, fit Hidden Markov Model

• Construct DRO model with ambiguity set for transition prob.

• Solve by adapting Stochastic Dual Dynamic Programming

• No analysis of convergence to true problem
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Related work and Goals

Guevara et al. [2022]:

• Assume single historical sample path

• Fit a linear AR model with prespecified ranges of variation

• Solve finite-state Markovian approximation using SDDP

• No analysis of convergence to true problem

Our goals:

• Use single historical sample path

• Construct data-driven approximation that can be solved using
Stochastic Dual Dynamic Programming

• Establish convergence as size of sample path grows (assuming
time series model)
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Problem Setup

• Given historical data from a single trajectory of {ξt}

Dn :=
{
ξ̃0, ξ̃1, · · · , ξ̃n

}
• Want to solve

V1(ξ1) := min
z1∈Z1(ξ1)

f1(z1, ξ1) + E [V2(z1, ξ2) | ξ1] ,

where

Vt(zt−1, ξ[t]) := min
zt∈Zt(zt−1,ξt)

stage t cost︷ ︸︸ ︷
ft(zt , ξt) +

expected cost of future stages︷ ︸︸ ︷
E
[
Vt+1(zt , ξ[t+1]) | ξ[t]

]
, t ∈ [T − 1],

VT (zT−1, ξ[T ]) := min
zT∈ZT (zT−1,ξT )

fT (zT , ξT ).

• Assume
• True model: ξt = f ∗(ξt−1) + Q∗(ξt−1)εt with i.i.d. errors {εt}
• We know function classes F , Q such that f ∗ ∈ F , Q∗ ∈ Q
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Empirical Residuals-based Sample Average Approximation

1 Estimate f ∗, Q∗ using our favorite ML method ⇒ f̂n, Q̂n

Compute empirical residuals

ε̂in := [Q̂n(ξ̃
i−1)]−1

(
ξ̃i − f̂n(ξ̃

i−1)
)
, i ∈ [n]

2 Use {f̂n(ξt) + Q̂n(ξt)ε̂
i
n}ni=1 as samples of ξt+1 given ξt in SAA

V̂ ER
t,n (zt−1, ξt) := min

zt∈Zt(zt−1,ξt)
ft(zt , ξt) +

1

n

∑
j∈[n]

V̂ ER
t+1,n(zt , f̂n(ξt) + Q̂n(ξt)ε̂

i
n)

Tailored convergence analysis required since same empirical errors
ε̂in used for all time stages
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Convergence Theory

Assumptions on the multistage stochastic program:

Assumptions on the ML setup:

Asymptotic optimality
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Convergence Theory

Assumptions on the multistage stochastic program:

• Can always take recourse decisions to keep system feasible

• The feasible region Zt for each stage t is bounded

Assumptions on the ML setup:

• The functions f ∗ and Q∗ are Lipschitz continuous

• f̂n → f ∗ and Q̂n → Q∗ uniformly on their domains

Asymptotic optimality

Under above assumptions, as the historical sample size n increases,
any first-stage ER-SAA solution converges to an optimal solution
of the true multistage stochastic program
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Convergence Theory

Result holds with these weaker assumptions on the ML setup:
• The functions f ∗, f̂n, Q

∗, and Q̂n are Lipschitz continuous

• Mean-squared estimation error consistency:

1

n

∑
i∈[n]

∥f ∗(ξ̃i−1)− f̂n(ξ̃
i−1)∥2 p−→ 0,

1

n

∑
i∈[n]

∥
[
Q∗(ξ̃i−1)

]−1 −
[
Q̂n(ξ̃

i−1)
]−1∥2 p−→ 0

• For each t ∈ [T − 1]:

Eεt∼Pn

[
∥f ∗(ξt)− f̂n(ξt)∥

∣∣ξ1] p−→ 0,

Eεt∼Pn

[
∥Q∗(ξt)− Q̂n(ξt)∥

∣∣ξ1] p−→ 0

Pn := 1
n

∑
i∈[n] δε̃i is the true empirical distribution of errors

These assumptions can be readily verified, e.g., for linear vector
auto-regressive processes
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Rates of Convergence

Assume

• The errors {εt} are sub-Gaussian

• The true multistage stochastic program satisfies assumptions
required for SAA convergence (e.g., Shapiro et al. [2009])

• The regression estimates f̂n and Q̂n satisfy large deviation
properties

Rates of convergence of regression estimates dictate rates of
convergence of ER-SAA solutions

• For parametric time series models, rate of convergence of
ER-SAA can equal rate of convergence of classical SAA

Rohit Kannan Data-Driven Multi-Stage Stochastic Optimization July 28, 2022 22 / 30



Numerical Experiments: Hydrothermal Scheduling

• Decisions zt : Hydrothermal & natural gas generation, spillage

• Random vector ξ: Amount of rainfall
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Numerical Experiments: Hydrothermal Scheduling
Assume true time series model for rainfall is of the form

ξt = (α∗
t + β∗

t ξt−1) exp(εt),

where α∗
t = α∗

t+12, β∗
t = β∗

t+12, εt
i.i.d.∼ N (µ,Σ)

Good fit to historical data over 8 decades! (Shapiro et al. [2012])
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Numerical Experiments: Hydrothermal Scheduling

• Consider the Brazilian interconnected power system with
four hydrothermal reservoirs

• Generate a sample trajectory of {ξt} using time series model

ξt = (α∗
t + β∗

t ξt−1) exp(εt),

where α∗
t = α∗

t+12, β∗
t = β∗

t+12, εt
i.i.d.∼ N (µ,Σ)

• Estimate coefficients (α̂t , β̂t) such that

α̂t = α̂t+12, β̂t = β̂t+12

Use these to estimate samples of the errors εt

• Solve the ER-SAA model using SDDP.jl [Dowson and
Kapelevich, 2021]. Estimate sub-optimality of solutions
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Results when the time series model is correctly specified

Estimate true heteroscedastic model: ξt = (α∗
t + β∗

t ξt−1) exp(εt)

Lower y-axis value =⇒ closer to optimal
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n: number of historical samples per month

Boxes: 25, 50, and 75 percentiles of optimality gap estimates;
Whiskers: 5 and 95 percentiles
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Results when the time series model is misspecified

Estimate seasonal additive error model: ξt = α∗
t + β∗

t ξt−1 + εt

Lower y-axis value =⇒ closer to optimal
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Concluding Remarks

ER-SAA: a modular approach to using covariate information in
optimization under uncertainty

• Solvable using Stochastic Dual Dynamic Programming

• Enables decision-makers to effectively use side information

Future research directions

• Formulations with stochastic constraints, discrete recourse
decisions; robust multistage optimization

• Application to energy systems optimization

Try it out for your application!

Questions? rohitk@alum.mit.edu

K., Bayraksan, and Luedtke. Data-Driven SAA With Covariate Information. arXiv:2207.13554

K., Bayraksan, and Luedtke. Residuals-Based DRO With Covariate Information. arXiv:2012.01088

K., Ho-Nguyen, and Luedtke. Data-Driven Multistage Stochastic Optimization on Time Series. Working Paper
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