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Motivation: Hydrothermal Scheduling

T
min Z b:q: + crqr + g e } generation & spillage costs
t=1
st. hy =hy 1+ & —pr +ur — v, Vit } reservoir balance
aps +qy = dp, Vt } meet power demand

0 S ht S hmax’ Pt, qt, Vi, Ut Z 07 Vt

» h;: amount of water in the reservoir at stage t
> &;: uncertain amount of rainfall at stage t
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Outline

@ Data-driven two-stage stochastic optimization
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Prelude: Two-Stage Stochastic Programming

Random
event

— ———————
First-stage Recourse

® Traditional two-stage SP: minimize expected system cost
assuming distribution of random vector Y known

Lneig Ey[c(z,Y)]

® Sample Average Approximation: given samples {y'}7_, of Y
1 n
min Ey[c(z, Y)] & min = > c(z,y)

€EZ n“
i=1

® SAA theory: optimal value and solutions converge as n — oo
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Prelude: Two-Stage Stochastic Programming

Random
event

— ———————
First-stage Recourse

® Traditional two-stage SP: minimize expected system cost
assuming distribution of random vector Y known

Lneig Ey[c(z,Y)]

® Sample Average Approximation: given samples {y'}7_, of Y

n

1 .

inE Y)] ~ min - '

min Ey[c(z, V)] gygn;dz,y)
=

® SAA theory: optimal value and solutions converge as n — oo

Can we use covariates/features to better predict the random vector Y7
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Stochastic Programming with Covariate Information

Smart Grid

oo p

i = - -
Power Grid Scheduling Production Planning/Scheduling
Y: Load; Renewable energy outputs Y: Product demands; Prices
X: Weather observations; Time/Season X: Seasonality; Web search results
z: Generator scheduling decisions z: Production and inventory decisions
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Stochastic Programming with Covariate Information

Smor'g Grid _

o

Ol BN
“n-nmh wI‘IT'illil

Production Planning/Scheduling

Power Grid Scheduling

Y: Load; Renewable energy outputs Y: Product demands; Prices

X: Weather observations; Time/Season X: Seasonality; Web search results

z: Generator scheduling decisions z: Production and inventory decisions

® Given historical data on uncertain parameters and covariates
L i _i\1n
Dn S ()/ax) i=1
® When making decision z, we observe a new covariate X = x
® Goal: minimize expected cost given covariate observation x:

;nggE[c(z, Y)| X =x]
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Stochastic Programming with Covariate Information

® Assume we have uncertain parameter and covariate data pairs

Dy = {(yiaxi)}7:1

® When making decision z, we observe a new covariate X = x

® Goal: minimize expected cost given covariate observation x:

inE[c(z,Y)| X =
min Efc(z, Y) [ X = x]

® Challenge: D, may not include covariate observation X = x
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Stochastic Programming with Covariate Information

® Assume we have uncertain parameter and covariate data pairs

Dy = {(yiaxi)}7:1

When making decision z, we observe a new covariate X = x

Goal: minimize expected cost given covariate observation x:

inE[c(z,Y)| X =
min Efc(z, Y) [ X = x]

Challenge: D, may not include covariate observation X = x

How to construct data-driven approximation to conditional SP?
@ Learn: predict Y given X = x

@® Optimize: integrate learning into optimization (with errors)
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Stochastic Programming with Covariate Information

® Assume we have uncertain parameter and covariate data pairs

Dy = {(yiaxi)}7:1

When making decision z, we observe a new covariate X = x

® Goal: minimize expected cost given covariate observation x:

inE[c(z,Y)| X =
min Efc(z, Y) [ X = x]

Challenge: D, may not include covariate observation X = x

® How to construct data-driven approximation to conditional SP?

@ Learn: predict Y given X = x

@® Optimize: integrate learning into optimization (with errors)

Assume Y = f*(X) + Q*(X)e with X and ¢ independent
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Separate Learning and Optimization

@ Use data to train our favorite ML prediction model:

A

fo(+) € arg min oF(xD),y' f
(1) € fg)g;(( ).y") + po(f)

® Given observed covariate X = x, use point prediction within
deterministic optimization model

min ¢(z, n(x))
® Modular: separate learning and optimization steps
® Expect to work well if (and likely only if) prediction is accurate

® Does not yield asymptotically consistent solutions
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Integrated Learning and Optimization

Approach 1: Modify the learning step!

® Change loss function in ML training step to reflect use of
prediction within optimization model

® More challenging training problem + less modular

Approach 2: Modify the optimization step?

® Change optimization model to reflect uncertainty in prediction

Approach 3: Direct solution learning?
® Attempt to directly learn a mapping from x to a solution z

® Handling constraints and large dimensions of z is challenging

!Kao et al. [2009], Donti et al. [2017], Elmachtoub and Grigas [2017]
Ban et al. [2018], Bertsimas and Kallus [2020], Deng and Sen [2022]
*Ban and Rudin [2018], Bertsimas and Kallus [2020]
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Empirical Residuals-based Sample Average Approximation
Approach (Deng and Sen [2022],Ban et al. [2018],K. et al. [2020a])
@ Use data to train our favorite ML prediction model = fn, @,,

() EargmlanHy x)|I?

f()er i=1

Compute empirical residuals 2}, := [Qn(x")] "2 (y' — fa(x')), i € [n]

Rohit Kannan Data-Driven Multi-Stage Stochastic Optimization July 28, 2022 8 /30



Empirical Residuals-based Sample Average Approximation
Approach (Deng and Sen [2022],Ban et al. [2018],K. et al. [2020a])
@ Use data to train our favorite ML prediction model = fn, @,,

() EargmlanHy x)|I?

f()er i=1
Compute empirical residuals 2}, := [Qn(x")] "2 (y' — fa(x')), i € [n]
® Use {f,(x)+ Qn(x)2 ,,} ', as proxy for samples of Y given X = x

1 2 A Ai
min Z; c(z, F(x) + Qn(x)é") (ER-SAA)
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Empirical Residuals-based Sample Average Approximation
Approach (Deng and Sen [2022],Ban et al. [2018],K. et al. [2020a])
@ Use data to train our favorite ML prediction model = fn, Q,,
n

1 i i
fa(-) € argmin = "[ly" — £(x)|?

f(oer N3
Compute empirical residuals 2}, := [Qn(x")] "2 (y' — fa(x')), i € [n]

@ Use {fy(x) + Qn(x),}7_, as proxy for samples of Y given X = x

min © Z ez, Fy(x) + Qu(x)21) (ER-SAA)

e Convergence conditions and rates: K. et al. [2020a]
® DRO extension: K. et al. [2020b]
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Empirical Residuals-based Sample Average Approximation
Approach (Deng and Sen [2022],Ban et al. [2018],K. et al. [2020a])
@ Use data to train our favorite ML prediction model = fn, @,,

() EargmlanHy x)|I?

f()er i=1

Compute empirical residuals 2}, := [Qn(x")] "2 (y' — fa(x')), i € [n]

@ Use {fy(x) + Qn(x),}7_, as proxy for samples of Y given X = x

n

min © Z ez, Fy(x) + Qu(x)21) (ER-SAA)

e Convergence conditions and rates: K. et al. [2020a]

® DRO extension: K. et al. [2020b]

e Can we extend approach to multi-stage case, particularly
given a single historical sequence of data?
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Outline

@® Multi-stage stochastic optimization on time series
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Multistage Stochastic Optimization

Random Random Random
event event event

— ——> 000 —| ——
Stage #1 Stage #2 Stage #T-1 Stage #T
decisions decisions decisions decisions

Complexity of multi-stage stochastic programs can grow
significantly with the number of stages T!

Stage1
Stage 2
Stage 3
Low High Low High Stage T a{ \®
Stage T L: Low Rainfall
T-1 H: High Rainfall
Scenario 1 Scenario 2

Stochastic Dual Dynamic Programming (Pereira and Pinto [1991]):
Exploit recombining scenario tree structure to limit number of

value functions that need to be approximated.
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Multistage Stochastic Optimization

Random Random Random
event event event

— ——> 000 —| ——
Stage #1 Stage #2 Stage #T-1 Stage #T
decisions decisions decisions decisions

® Decision Process: z; ~»> &y~ zp ~ -+ - €7 ~> ZT

At stage t, solve

min cost of decisions z; + expected cost of decisions z;
in current stage t in future stages given histor
2€Ze(2e-1,60) g ges g AGE))
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Multistage Stochastic Optimization

Random Random Random
event event event

— ——> 000 —| ——
Stage #1 Stage #2 Stage #T-1 Stage #T
decisions decisions decisions decisions

® Decision Process: z; ~»> &y~ zp ~ -+ - €7 ~> ZT

At stage t, solve

min cost of decisions z; + expected cost of decisions z;
in current stage t in future stages given histor
2€Ze(2e-1,60) g ges g AGE))

® Assume time series model: & = F*(&—1) + Q" (&r—1)es
® Goal: Given a single historical trajectory of {&:}

Dy = {507517”' 75/7}

estimate optimal first-stage decision z;
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Related work

Bertsimas et al. [2022]:

® Assume given an i.i.d. set of historical sample paths

e Construct RO model with uncertainty sets around sample paths
® Show asymptotic convergence as number of sample paths grows
® Solve using decision rule approximations

Related: Ban et al. [2018], Bertsimas and McCord [2019],
Bertsimas et al. [2019]

Silva et al. [2021]:

® Assume single historical sample path, fit Hidden Markov Model
e Construct DRO model with ambiguity set for transition prob.
® Solve by adapting Stochastic Dual Dynamic Programming

® No analysis of convergence to true problem
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Related work and Goals

Guevara et al. [2022]:

® Assume single historical sample path

® Fit a linear AR model with prespecified ranges of variation
® Solve finite-state Markovian approximation using SDDP

® No analysis of convergence to true problem
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Related work and Goals

Guevara et al. [2022]:

® Assume single historical sample path

® Fit a linear AR model with prespecified ranges of variation
® Solve finite-state Markovian approximation using SDDP

® No analysis of convergence to true problem

Our goals:
® Use single historical sample path

e Construct data-driven approximation that can be solved using
Stochastic Dual Dynamic Programming

e Establish convergence as size of sample path grows (assuming
time series model)
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Problem Setup

® Given historical data from a single trajectory of {{;}
D, = {50’51’ e 7£n}
® Want to solve

Vl(gl) = min ) fl(zlaé.l) +E[V2(217€2) ‘ 61]7

€L, (51

where
stage t cost  expected cost of future stages

. ——
Vi(ze-1,py) == LI fe(zt, &) +E [Vey1(ze, §esy) 1G], t € [T =10,

Vr(zr-1,§m) = min )fT(ZT7£T)~

zr€Z7(z7-1.8T

® Assume

® True model: & = f*(&{r—1) + Q" (&r—1)e¢ with i.id. errors {e;}
® \We know function classes F, Q such that f* € F, Q* € O
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Empirical Residuals-based Sample Average Approximation

@ Estimate 7, Q* using our favorite ML method = f,,, (:7,7

Compute empirical residuals

&= [Qu@ TN E — @), ieln]
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Empirical Residuals-based Sample Average Approximation

@ Estimate 7, Q* using our favorite ML method = fn, @n

Compute empirical residuals

&= [Qu@ TN E — @), ieln]

@ Use {f,(&) + Qn(&:)20 11, as samples of &1 given & in SAA

~ . 1 N o A N
th,_:f(zt—lwft) = EZ"?'“ ¢ )ft(ztyft) + " Z VtiRl,n(zh fo(&e) + Qn(&e)0)
Zt t\Zt—1,Gt .
Jj€ln]

Tailored convergence analysis required since same empirical errors
€ used for all time stages
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Empirical Residuals-based Sample Average Approximation

@ Estimate 7, Q* using our favorite ML method = 7?,,, @,,

Compute empirical residuals

A~

&= [Qu(ENITHE - (@), ieln]
@ Use {#,(&:) + Qn(&:)2 3, as samples of £411 given & in SAA

Tailored convergence analysis required since same empirical errors
&), used for all time stages

&

Stage t

Stage t+1 O . O

(&) + Qu(e) A& + Qu(er)z, Fl&) + Qul&)?)
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Convergence Theory

Assumptions on the multistage stochastic program:

Assumptions on the ML setup:

Asymptotic optimality
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Convergence Theory

Assumptions on the multistage stochastic program:
® Can always take recourse decisions to keep system feasible

® The feasible region Z; for each stage t is bounded

Assumptions on the ML setup:

Asymptotic optimality
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Convergence Theory

Assumptions on the multistage stochastic program:
® (Can always take recourse decisions to keep system feasible

® The feasible region Z; for each stage t is bounded

Assumptions on the ML setup:
® The functions f* and @™ are Lipschitz continuous
° 7?,, — f* and @,, — Q* uniformly on their domains

Asymptotic optimality
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Convergence Theory

Assumptions on the multistage stochastic program:
® Can always take recourse decisions to keep system feasible

® The feasible region Z; for each stage t is bounded

Assumptions on the ML setup:
® The functions f* and Q* are Lipschitz continuous

° ﬁ, — f* and @,, — Q* uniformly on their domains

Asymptotic optimality

Under above assumptions, as the historical sample size n increases,
any first-stage ER-SAA solution converges to an optimal solution
of the true multistage stochastic program
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Convergence Theory

Result holds with these weaker assumptions on the ML setup:
® The functions f*, f,, Q*, and Q, are Lipschitz continuous

® Mean-squared estimation error consistency:

CSTIFE ~AEI 2o,

i€[n]

L@ E ] - [QE ] R 2 0

i€[n]

® Foreachte [T —1]:
Eerry [[IF(6) = Bl ] 20,
Eeinr, [1Q7(6) = Qu(&n)l[&1] 2 0

Py = %Zie[n] 0z is the true empirical distribution of errors

These assumptions can be readily verified, e.g., for linear vector
auto-regressive processes
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Rates of Convergence

Assume
® The errors {c;} are sub-Gaussian

® The true multistage stochastic program satisfies assumptions
required for SAA convergence (e.g., Shapiro et al. [2009])

® The regression estimates £, and Q, satisfy large deviation
properties
Rates of convergence of regression estimates dictate rates of
convergence of ER-SAA solutions

® For parametric time series models, rate of convergence of
ER-SAA can equal rate of convergence of classical SAA
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Numerical Experiments: Hydrothermal Scheduling

® Decisions z;: Hydrothermal & natural gas generation, spillage

® Random vector & Amount of rainfall
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Numerical Experiments: Hydrothermal Scheduling
Assume true time series model for rainfall is of the form

§e = (ar + Brée-1) exp(er),

iid.
where af =aj, 15, Bf =B & ~ N(wX)

Good fit to historical data over 8 decades! (Shapiro et al. [2012])
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Numerical Experiments: Hydrothermal Scheduling

e Consider the Brazilian interconnected power system with
four hydrothermal reservoirs

® Generate a sample trajectory of {&:} using time series model
§e = (ap + Bi&e—1) exp(er),
where ot =aji1n, B = Biii, &t £ N, )
e Estimate coefficients (&, B¢) such that
&¢ = Gur12,  Be = Berro
Use these to estimate samples of the errors ¢;

¢ Solve the ER-SAA model using SDDP. j1 [Dowson and
Kapelevich, 2021]. Estimate sub-optimality of solutions
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Results when the time series model is correctly specified

Estimate true heteroscedastic model: & = (af + S5&—1) exp(et)
Lower y-axis value = closer to optimal

T = 12 stages T = 36 stages

o

a0
40

B

35 35
30

w
=

25

N
v

20

%@@@% é%%%@

o
o

n=4 n=6 n=10 n=14 n=20 n=50 n=4 n=6 n=10 n=14 n=20 n=50

=
4

UCB on % optimality gap
= N
o o

o

C

n: number of historical samples per month

Boxes: 25, 50, and 75 percentiles of optimality gap estimates;
Whiskers: 5 and 95 percentiles
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Results when the time series model is misspecified

Estimate seasonal additive error model:  &; = of + B{&—1 + ¢+
Lower y-axis value = closer to optimal

T = 12 stages T = 36 stages

40 40
235 35
&
230 30
£
®25 25
£
220 20
o
X35 15
c
o
. ILz
5]
5 5
0 [}

C

n=4 n=6 n=10 n=14 n=20 n=50 n=4 n=6 n=10 n=14 n=20 n=50

n: number of historical samples per month
Boxes: 25, 50, and 75 percentiles of optimality gap estimates;
Whiskers: 5 and 95 percentiles
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Concluding Remarks
ER-SAA: a modular approach to using covariate information in
optimization under uncertainty
® Solvable using Stochastic Dual Dynamic Programming

® Enables decision-makers to effectively use side information

Future research directions

® Formulations with stochastic constraints, discrete recourse
decisions; robust multistage optimization

® Application to energy systems optimization
Try it out for your application!

Questions? rohitk@alum.mit.edu

K., Bayraksan, and Luedtke. Data-Driven SAA With Covariate Information. arXiv:2207.13554
K., Bayraksan, and Luedtke. Residuals-Based DRO With Covariate Information. arXiv:2012.01088
K., Ho-Nguyen, and Luedtke. Data-Driven Multistage Stochastic Optimization on Time Series. Working Paper
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