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Traditional data-driven stochastic programming

• Traditional SP: minimize expected cost

min
z∈Z

EY [c(z ,Y )]

• Data-driven SP: given (i.i.d.) samples {y i}ni=1 of Y , construct
Sample Average Approximation (SAA)

min
z∈Z

EY [c(z ,Y )] ≈ min
z∈Z

1

n

n∑
i=1

c(z , y i )

• SAA theory: optimal value and solutions converge as n→∞,
error is Op(n−1/2) (Shapiro et al., 2009)
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Stochastic programming with covariate information
Enter Machine Learning

• Assume we have historical data of form Dn := {(y i , x i )}ni=1
(parameters and covariates)
I Covariates are also referred to as features or side information

• When making decision z , we observe a new covariate x , which
we can use to predict y (with error)

• How to integrate learning (predicting Y given X = x) with
optimization?
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Example applications

Production/Inventory Planning
(Ban et al., 2018; Bertsimas and Kallus, 2020)

Y : Product demands

X : Seasonality; Web search results

z : Production and Inventory decisions

Power Grid Scheduling
(Donti et al., 2017)

Y : Load; Renewable energy outputs

X : Weather observations; Time/Season

z : Generator scheduling decisions
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Problem setup

Given

• Joint observations Dn := {(y i , x i )}ni=1 of random vectors Y , X

• New random covariate observation X = x

Want to solve

v∗(x) := min
z∈Z

E [c(z ,Y ) | X = x ]

Assume

• True model: Y = f ∗(X ) + ε with X and ε independent

=⇒ v∗(x) ≡ min
z∈Z

Eε[c(z , f ∗(x) + ε)]

• Known function class F such that f ∗ ∈ F
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Traditional integrated learning and optimization

1 Use data to train your favorite ML prediction model:

f̂n(·) ∈ arg min
f (·)∈F

n∑
i=1

`(f (x i ), y i ) + ρ(f )

2 Given observed covariate x , use point prediction within
deterministic optimization model

min
z∈Z

c(z , f̂n(x))

• Modular: separate learning and optimization steps

• Expect to work well if (and likely only if) prediction is accurate
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Empirical Residuals-based Sample Average Approximation

Approach suggested in Kim and Mehrotra (2015), Sen and Deng
(2018); analyzed in Ban et al. (2018) for a specific application

1 Estimate f ∗ using your favorite ML method ⇒ f̂n, and
compute empirical residuals ε̂in := y i − f̂n(x i ), i ∈ [n]

2 Use {f̂n(x) + ε̂in}ni=1 as proxy for samples of Y given X = x

ẑERn (x) ∈ arg min
z∈Z

1

n

n∑
i=1

c(z , f̂n(x) + ε̂in) (ER-SAA)

• Modular like traditional approach

• Surprisingly, no general convergence analysis
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Toward convergence theory: Definitions
Notation:

I v∗(x) = optimal value of true problem

I Sκ(x) = set of κ-optimal solutions of true problem

I ẑERn (x) ∈ ŜER
n (x) = set of optimal solutions to (ER-SAA)

Asymptotic optimality: the out-of-sample “cost” of data-driven
solutions approaches the minimum cost of the true problem as the
number of data samples increases

Eε
[
c(ẑERn (x), f ∗(x) + ε)

]
p−→ v∗(x)

Assume for this talk: Two-stage stochastic LP setting

min
z∈Z

cT
z z + EY [Q(z ,Y )] ,

where Q(z ,Y ) := min
v∈Rdv

+

{
qT
v v : Wv = Y − Tz

}
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c(ẑERn (x), f ∗(x) + ε)

]
p−→ v∗(x)

Assume for this talk: Two-stage stochastic LP setting

min
z∈Z

cT
z z + EY [Q(z ,Y )] ,

where Q(z ,Y ) := min
v∈Rdv

+

{
qT
v v : Wv = Y − Tz

}

Rohit Kannan Data-driven SAA with covariate information November 10, 2020 7 / 14



Toward convergence theory: Definitions
Notation:

I v∗(x) = optimal value of true problem

I Sκ(x) = set of κ-optimal solutions of true problem
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n (x) = set of optimal solutions to (ER-SAA)

Asymptotic optimality: the out-of-sample “cost” of data-driven
solutions approaches the minimum cost of the true problem as the
number of data samples increases

Eε
[
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Asymptotic optimality of ER-SAA solutions

Assumption: The regression procedure satisfies

• Pointwise error consistency: f̂n(x)
p−→ f ∗(x)

• Mean-squared estimation error consistency:

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖2 p−→ 0.

Informal Theorem: Under the above assumptions, the ER-SAA
solution ẑERn (x) is asymptotically optimal for a.e. x
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Finite sample guarantees for ER-SAA solutions

sub-Gaussian errors ε, κ > 0: optimality gap, δ ∈ (0, 1): reliability level

Estimate sample size n required for P
{
ŜER
n (x) ⊆ Sκ(x)

}
≥ 1− δ,

i.e., “optimal solutions of (ER-SAA) are nearly optimal to the true
problem with probability ≥ 1− δ”

• If f ∗ is linear and we use OLS regression, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ dy log

(
O(1)

δ

)
+ dxdy

]
• If f ∗ is s-sparse linear and we use the Lasso, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ sdy log

(
O(1)

δ

)
+ s log(dx)dy

]
• If f ∗ is Lipschitz and we use kNN regression, then require

n ≥ O(1)dz
κ2

log

(
O(1)

κ

)
+

(
O(1)dy

κ2

)dx
[
dx log

(
O(1)dxdy

κ2

)
+ log

(
O(1)

δ

)]
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Resource allocation model (Luedtke, 2014)

Two-stage resource allocation LP model

• Meet demands of 30 customers for 20 resources

• Uncertain demands Y generated according to

Yj = α∗j +
3∑

l=1

β∗jl(Xl)
p + εj , ∀j ∈ {1, · · · , 30},

where εj ∼ N (0, σ2
j ), p ∈ {0.5, 1, 2}, dim(X ) ∈ {10, 100}

• Fit linear model with OLS regression (even when p 6= 1)

Yj = αj +

dim(X )∑
l=1

βjlXl + ηj , ∀j ∈ {1, · · · , 30},

where ηj are zero-mean errors

• Estimate optimality gap of ER-SAA solutions ẑERn (x)
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Results with correct model class (p = 1)

Red (E): ER-SAA + OLS

Black (k): Reweighted SAA with kNN (Bertsimas and Kallus, 2020)
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Results with misspecified model class (p 6= 1)

Red (E): ER-SAA + OLS, Black (k): Reweighted SAA with kNN
dx = 10 dx = 100
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Concluding remarks

Empirical residuals SAA: A modular approach to using covariate
information in optimization

• Converges under appropriate assumptions on prediction and
optimization models

• Trade-off in choosing prediction model class: using a
misspecified model can lead to better results with limited data

Preprint on Optimization Online:
http://www.optimization-online.org/DB FILE/2020/07/7932.pdf

Includes

• two new data-driven SAA formulations

• rate of convergence results

• additional computational experiments + source code

Questions? rohit.kannan@wisc.edu
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