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DC Optimal Power Flow
Notation:
» V = set of buses/nodes; G = set of generators
» &£ = set of lines/edges; D = set of loads

» pO = generator outputs; @ = phase angles

generation cost

0
min > A (DC-OPF)

0
PoYieg
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generation cost

—
min > fi(pf) (DC-OPF)
A
s.t. Z p? = Z d;, } power balance (implied by power flow)
i€eg JjeD
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DC Optimal Power Flow
Notation:
» V = set of buses/nodes; G = set of generators
» &£ = set of lines/edges; D = set of loads

» pO = generator outputs; @ = phase angles

generation cost

—
min > f1.i(pf) (DC-OPF)
po0 ieg
s.t. Z p? = Z d;, } power balance (implied by power flow)
icG jeD
Z Bil0i — 0] = p} — di, VieV, } DC power flow eqns
Jjiij)ee

plin < p? < pM . Vie Y, } generation limits

Other constraints (e.g., line limits)
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The need for generator reserves

High wind power penetration + Intermittency of wind energy
—> need to balance power using reserves

Reserve power can be provided by both conventional and wind
power sources

Existing models of reserve activation are inadequate

Bottom line: considering the effect of uncertainties can enable
safe and economically efficient operation of the grid
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Managing reserve saturation

e Activate reserves to counteract P} ()
imbalance in power due to load
and wind uncertainties w

0
T 0 Pi
pi (W) = pi  + aiXg(w)
—— ~— ——
target nominal reserve
generation  generation generation

«j = participation factor; > ;=1
Y 4(w) = power imbalance
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® How to avoid asking a generator for more than it can produce?
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Managing reserve saturation

® Activate reserves to counteract py(w)
imbalance in power due to load
and wind uncertainties w i

T 0 Pi
pi (W) = p + aiXd(w)

—— ~—

target nominal reserve min
generation  generation generation P;

«j = participation factor; > ;=1
Y 4(w) = power imbalance

® How to avoid asking a generator for more than it can produce?
» Reduce the slope «;
» Model reserve saturation + redistribute additional reserves
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Modeling reserve saturation

Reserve saturation: Generators provide reserves only until they hit limits

e Activate reserves in response to P;(w)
load and wind uncertainties w max

pl(w) =p) +aiZg(w) +as(w)
— i

target
generation .
min

ajs(w) = “shortfall” in generation
due to reserve saturation

e Actual generation p;(w) decided as
pIR(w). i P () < PP"(w)

pi(w) =Pl (w),  if pP"(w) < pf(w) < PP ()
PP (), if pf (w) > pP(w)
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Stochastic DC-OPF with reserve saturation

Two-stage stochastic DC-OPF model

® First stage: Determine nominal/scheduled generation and
participation factors, and procure reserves

® Second stage: Determine actual generation levels and other
power flow variables, penalize line flow violations, and
minimize exceedance of procured reserves

® Use reserve saturation in the second stage to determine actual
generation levels
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First-stage model

Decision variables: for each generator i € G
0

pj

+

r; procu red u p-reserves,

scheduled generation,

«j = participation factor
re

= procured down-reserves

cost of scheduled generation and reserves

expected second-stage cost
min

——f
in 3o (Rilp)) + Bi(r) + Bi07) + Q% rt,ra)
pYa

ic
rt,r— g
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—~
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First-stage model

Decision variables: for each generator i € G
p? = scheduled generation, «; = participation factor

r,-Jr = procured up-reserves, r; = procured down-reserves

cost of scheduled generation and reserves expected second-stage cost

—
min Z <f1,P,)+f2:( )+ hi(r )) + Q% rt,r,a)
Pa fZ

rtr—

o,L 0 o,U § : 0 __ bounds on scheduled generation,
st. p SP SP 3 p1_§ djv} i s

scheduled generation = expected load
icG Jje€D

pl + r+ < pmax’ P? — ri > pmm Yi e R, Scheduled generation

and reserves within
0 < I’+ < I’Jr max’ 0 <r <r max’ generator bounds
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First-stage model

Decision variables: for each generator i € G
p? = scheduled generation, «; = participation factor

r,-Jr = procured up-reserves, r; = procured down-reserves

cost of scheduled generation and reserves expected second-stage cost

—
min Z <f1,P,)+f2:( )+ hi(r )) + Q% rt,r,a)
Pa fZ

rtr—

o,L 0 o,U § : 0 __ bounds on scheduled generation,
st. p SP SP 3 p1_§ djv} i s

scheduled generation = expected load
icG Jje€D

+ max 0 mm H :
pl 4" <P, pf 2 pI™, Vi€ R, | schedued geneation
0 <rt<r s 0 <r <r s generator bounds

a > O, § :ai — 1, a; > am|n7 Vi e gres } A subset of generators are

required to provide reserves
i€g
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Second-stage model
Expected second-stage cost Q(p°, rT,r—,a) = E,[q(p°, r*,r™, a,w)],

where g(p°, rt, r=, o, w) is the optimal value of

penalty for exceeding procured reserves

min > (quilpiw) = (67 + 7)) + qilpilw) = (7 = 7)) +
p(w),pT(w) ico
s(w),0(w)

Z q3,i(Bj0i(w) — 0;(w)])

(ij)e€

~
penalty for line flow violations
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penalty for Iin;rflow violations
st pf(w) =p) + aiZg(w) + ais(w), Vi€g,

reserve p’mm( )’ If p,( )<p’mm( )
ssturstion { pi(w) = { pf(w), i pP(w) < P (w) < pP¥*(w) , Vi€ G,
pI(w), if pl (w) > P (w)
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penalty for Iin;rflow violations
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reserve (@), i Bl (w) < P(w)
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Tailored decomposition method

® Second-stage problem: smooth convex objective function, but
nonsmooth, nonconvex constraints (due to reserve saturation)
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Tailored decomposition method

® Second-stage problem: smooth convex objective function, but
nonsmooth, nonconvex constraints (due to reserve saturation)

» Construct smooth approximation of reserve saturation equation

®)

max

P;
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Tailored decomposition method

® Second-stage problem: smooth convex objective function, but
nonsmooth, nonconvex constraints (due to reserve saturation)

» Construct smooth approximation of reserve saturation equation

®)

max

P;

w I= 0 Ed(w)

® Given a first-stage feasible point and scenario w, can efficiently
determine stochastic gradient of the second-stage cost

» Compute second-stage solution by binary search + linear solve
» Compute stochastic gradient by solving a linear system
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Tailored decomposition method

® Second-stage problem: smooth convex objective function, but
nonsmooth, nonconvex constraints (due to reserve saturation)

» Construct smooth approximation of reserve saturation equation

®)

max

P;

©=0 o)
® Given a first-stage feasible point and scenario w, can efficiently

determine stochastic gradient of the second-stage cost

» Compute second-stage solution by binary search + linear solve
» Compute stochastic gradient by solving a linear system

® Use projected stochastic gradient method to compute
stationary solution to approx. (Davis and Drusvyatskiy, 2018)
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Computational experiments
Modify IEEE 6-bus and 118-bus instances to include wind power plants
6-bus case: 10% load uncertainty; 118-bus case: 5% load uncertainty

Both cases: 10% wind uncertainty (+ correlations across wind plants)
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Computational experiments
Modify IEEE 6-bus and 118-bus instances to include wind power plants
6-bus case: 10% load uncertainty; 118-bus case: 5% load uncertainty
Both cases: 10% wind uncertainty (+ correlations across wind plants)

Compare
® Qur approach: Smooth approximation of reserve saturation

® Generator penalty approach: No reserve saturation, but
penalize generator bounds violations in second stage

® Chance-constrained approach: No reserve saturation, but limit
individual probabilities of generator bounds violations

Second-stage objective function is nearly the same for all approaches
® Extra generator bounds violation penalty for the GP approach
Evaluate out-of-sample performance of all three approaches

® |nclude reserve saturation for all approaches in this evaluation
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IEEE 6-bus system with one wind power plant

Case 1: Wind generator can provide reserves

ion cost
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Joint probability of line violations

h. @: generator penalty. o and X: chance constraints

® Qur approach outperforms chance-constrained method

® Qur approach exhibits similar performance as generator
penalty method, but with less tuning
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IEEE 6-bus system with one wind power plant

Case 2: Wind generator does NOT provide reserves

® 4600
o

o

4400

4200 g%,

3600

Expected power generation
[#] B
[<] o
[=] o
o o

10 102
Joint probability of line violations

[J: our approach. e: generator penalty. o and X: chance constraints

® Qur approach outperforms both chance-constrained and
generator penalty methods

® Gap in efficient frontier from our approach because we use a

penalty approach and the efficient frontier is nonconvex
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IEEE 118-bus system with 25 wind power plants

® Consider different wind power penetration levels
® Plot lowest cost solution with line flow violations < 0.5%

® Qur approach yields solutions with

Lower total cost and Higher wind utilization

g:se . ?100

g L 2 o0’

= N
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° o

5 £

§2 H 70

2 g 60

e )

g9 £ 50

w 25 50 75 100 125 w25 50 75 100 125

Wind penetration [%] Wind penetration [%]

[J: our approach. A: generator penalty. o and X: chance constraints
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IEEE 118-bus system with 25 wind power plants

® Consider different wind power penetration levels
® Plot lowest cost solution with line flow violations < 0.5%
® Qur approach yields solutions with

Lower total cost and Higher wind utilization

o

IS

N

Expected total cost (incl. pen.)
Expected wind utilization [%]

ne
3]
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Wind penetration [%] Wind penetration [%]

[J: our approach. A: generator penalty. o and X: chance constraints

Reasonable computational effort for all methods

® Smooth approximation: 7 min; other two methods: 1.5 min
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Concluding remarks

® Modeling reserve saturation enables effective use of wind
power resources

® Resulting nonsmooth, nonconvex two-stage stochastic
program is solved using a tailored decomposition algorithm

® Qur approach outperforms formulations that use chance
constraints and generator bounds violation penalties

Paper in PSCC'20. DOI: 10.1016/j.epsr.2020.106566

Questions? rohit.kannan@wisc.edu
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