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DC Optimal Power Flow
Notation:

I V = set of buses/nodes; G = set of generators

I E = set of lines/edges; D = set of loads

I p0 = generator outputs; θ = phase angles

min
p0,θ

∑
i∈G

generation cost︷ ︸︸ ︷
f1,i (p

0
i ) (DC-OPF)

s.t.
∑
i∈G

p0
i =

∑
j∈D

dj ,
}

power balance (implied by power flow)

∑
j :(i ,j)∈E

βij [θi − θj ] = p0
i − di , ∀i ∈ V,

}
DC power flow eqns

pmin
i ≤ p0

i ≤ pmax
i , ∀i ∈ V,

}
generation limits

Other constraints (e.g., line limits)
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The need for generator reserves

• High wind power penetration + Intermittency of wind energy

=⇒ need to balance power using reserves

• Reserve power can be provided by both conventional and wind
power sources

• Existing models of reserve activation are inadequate

• Bottom line: considering the effect of uncertainties can enable
safe and economically efficient operation of the grid
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Managing reserve saturation

• Activate reserves to counteract
imbalance in power due to load
and wind uncertainties ω

pT
i (ω)︸ ︷︷ ︸

target
generation

= p0
i︸︷︷︸

nominal
generation

+ αiΣd(ω)︸ ︷︷ ︸
reserve

generation

αi = participation factor;
∑
αi = 1

Σd(ω) = power imbalance

p
0

i

d
( ) = 0

p
T

i
( )

slope 

• How to avoid asking a generator for more than it can produce?
I Reduce the slope αi

I Model reserve saturation + redistribute additional reserves
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Modeling reserve saturation

Reserve saturation: Generators provide reserves only until they hit limits

• Activate reserves in response to
load and wind uncertainties ω

pT
i (ω)︸ ︷︷ ︸

target
generation

= p0
i + αiΣd(ω) + αi s(ω)

αi s(ω) = “shortfall” in generation

due to reserve saturation

• Actual generation pi (ω) decided as

pi (ω) :=


pmin
i (ω), if pT

i (ω) < pmin
i (ω)

pT
i (ω), if pmin

i (ω) ≤ pT
i (ω) ≤ pmax

i (ω)

pmax
i (ω), if pT

i (ω) > pmax
i (ω)

p
0

i

p
max

i

p
min

i

p
i
( )

d
( ) = 0
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Stochastic DC-OPF with reserve saturation

Two-stage stochastic DC-OPF model

• First stage: Determine nominal/scheduled generation and
participation factors, and procure reserves

• Second stage: Determine actual generation levels and other
power flow variables, penalize line flow violations, and
minimize exceedance of procured reserves

• Use reserve saturation in the second stage to determine actual
generation levels
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First-stage model

Decision variables: for each generator i ∈ G
p0
i = scheduled generation, αi = participation factor

r+
i = procured up-reserves, r−i = procured down-reserves

min
p0,α

r+,r−

∑
i∈G

cost of scheduled generation and reserves︷ ︸︸ ︷(
f1,i (p

0
i ) + f2,i (r

+
i ) + f3,i (r

−
i )
)

+

expected second-stage cost︷ ︸︸ ︷
Q(p0, r+, r−, α)

s.t. p0,L ≤ p0 ≤ p0,U,
∑
i∈G

p0
i =

∑
j∈D

dj ,
}

bounds on scheduled generation,
scheduled generation = expected load

p0
i + r+

i ≤ pmax
i , p0

i − r−i ≥ pmin
i , ∀i ∈ R,

0 ≤ r+ ≤ r+,max, 0 ≤ r− ≤ r−,max,

}
Scheduled generation
and reserves within
generator bounds

α ≥ 0,
∑
i∈G

αi = 1, αi ≥ αmin, ∀i ∈ Gres
}

A subset of generators are
required to provide reserves
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Second-stage model
Expected second-stage cost Q(p0, r+, r−, α) = Eω[q(p0, r+, r−, α, ω)],

where q(p0, r+, r−, α, ω) is the optimal value of

min
p(ω),pT(ω)

s(ω),θ(ω)

∑
i∈G

penalty for exceeding procured reserves︷ ︸︸ ︷(
q1,i (pi (ω)− (p0

i + r+
i )) + q2,i (pi (ω)− (p0

i − r−i ))
)

+∑
(i ,j)∈E

q3,ij(βij [θi (ω)− θj(ω)])︸ ︷︷ ︸
penalty for line flow violations

s.t. pT
i (ω) = p0

i + αiΣd(ω) + αi s(ω), ∀i ∈ G,

reserve
saturation

model

{
pi (ω) =


pmin
i (ω), if pT

i (ω) < pmin
i (ω)

pT
i (ω), if pmin

i (ω) ≤ pT
i (ω) ≤ pmax

i (ω)

pmax
i (ω), if pT

i (ω) > pmax
i (ω)

, ∀i ∈ G,

DC
power
flow

equations

{ ∑
j :(i ,j)∈E

βij [θi (ω)− θj(ω)] = pi (ω)− di − d̃i (ω), ∀i ∈ V
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Tailored decomposition method
• Second-stage problem: smooth convex objective function, but

nonsmooth, nonconvex constraints (due to reserve saturation)

I Construct smooth approximation of reserve saturation equation

p
0

i

p
max

i

p
min

i

p
i
( )

d
( ) = 0

• Given a first-stage feasible point and scenario ω, can efficiently
determine stochastic gradient of the second-stage cost
I Compute second-stage solution by binary search + linear solve
I Compute stochastic gradient by solving a linear system

• Use projected stochastic gradient method to compute
stationary solution to approx. (Davis and Drusvyatskiy, 2018)
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Computational experiments

Modify IEEE 6-bus and 118-bus instances to include wind power plants

6-bus case: 10% load uncertainty; 118-bus case: 5% load uncertainty

Both cases: 10% wind uncertainty (+ correlations across wind plants)

Compare

• Our approach: Smooth approximation of reserve saturation

• Generator penalty approach: No reserve saturation, but
penalize generator bounds violations in second stage

• Chance-constrained approach: No reserve saturation, but limit
individual probabilities of generator bounds violations

Second-stage objective function is nearly the same for all approaches

• Extra generator bounds violation penalty for the GP approach

Evaluate out-of-sample performance of all three approaches

• Include reserve saturation for all approaches in this evaluation
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IEEE 6-bus system with one wind power plant

Case 1: Wind generator can provide reserves

10
-3
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Joint probability of line violations
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�: our approach. : generator penalty. ◦ and ×: chance constraints

• Our approach outperforms chance-constrained method

• Our approach exhibits similar performance as generator
penalty method, but with less tuning
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IEEE 6-bus system with one wind power plant

Case 2: Wind generator does NOT provide reserves
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�: our approach. : generator penalty. ◦ and ×: chance constraints

• Our approach outperforms both chance-constrained and
generator penalty methods

• Gap in efficient frontier from our approach because we use a
penalty approach and the efficient frontier is nonconvex
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IEEE 118-bus system with 25 wind power plants

• Consider different wind power penetration levels

• Plot lowest cost solution with line flow violations ≤ 0.5%

• Our approach yields solutions with

Lower total cost and Higher wind utilization

25 50 75 100 125

Wind penetration [%]

0

2

4

6

E
x
p

e
c
te

d
 t

o
ta

l 
c
o

s
t 

(i
n

c
l.
 p

e
n

.)

10
4

25 50 75 100 125

Wind penetration [%]

50

60

70

80

90

100

E
x
p

e
c
te

d
 w

in
d

 u
ti

li
z
a
ti

o
n

 [
%

]

�: our approach. ∆: generator penalty. ◦ and ×: chance constraints

Reasonable computational effort for all methods

• Smooth approximation: 7 min; other two methods: 1.5 min
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Concluding remarks

• Modeling reserve saturation enables effective use of wind
power resources

• Resulting nonsmooth, nonconvex two-stage stochastic
program is solved using a tailored decomposition algorithm

• Our approach outperforms formulations that use chance
constraints and generator bounds violation penalties

Paper in PSCC’20. DOI: 10.1016/j.epsr.2020.106566

Questions? rohit.kannan@wisc.edu
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