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Traditional Data-Driven Stochastic Programming

• Traditional SP: minimize expected system cost assuming
feasible region Z and distribution of Y known

min
z∈Z

EY [c(z ,Y )]

• Data-driven SP: have access to samples {y i}ni=1 of Y

min
z∈Z

EY [c(z ,Y )] ≈ min
z∈Z

1

n

n∑
i=1

c(z , y i ) (SAA)

• Sample Average Approximation theory: as sample size n→∞,
optimal value and solutions of (SAA) converge to those of
true SP at rate Op(n−1/2)
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Example: Mean-Risk Portfolio Optimization

min
z∈Z

EY [−Y Tz ] + ρ CVaRβ(−Y Tz),

where Z :=
{
z ∈ Rdz

+ :
∑

i zi = 1
}

.

I zi : fraction of capital invested in asset i

I Yi : uncertain net return of asset i

I CVaRβ ≈ average of the 100(1− β)% worst return outcomes

I ρ ≥ 0 and β ∈ [0, 1): risk parameters (e.g., ρ = 10, β = 0.8)
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Stochastic Programming with Covariate Information

• Use covariates X to inform distribution of random vector Y
I Covariates also called features or side information

• When making decision z , we observe a new covariate X = x

• Goal: solve the conditional SP

min
z∈Z

E [c(z ,Y ) | X = x ]
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Example Application: Power Grid Scheduling

Image credit: IEEE Innovation at Work

• Decisions z : Generator schedules

• Uncertain Parameters Y : Load, Renewable energy outputs

• Covariates X : Weather observations, Time of day/Season
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Example Application: Production Planning

Image credit: AIDIAONE

• Decisions z : Production and Inventory levels

• Uncertain Parameters Y : Product demands

• Covariates X : Seasonality, Web search results
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Stochastic Programming with Covariate Information
Enter Machine Learning

• When making decision z , we observe a new covariate X = x

• Goal: solve the conditional SP

min
z∈Z

E [c(z ,Y ) | X = x ]

• Assume we have uncertain parameter and covariate data pairs
(not necessarily i.i.d.)

Dn := {(y i , x i )}ni=1

• How to construct data-driven approximation to conditional SP?

1 Learn: predict Y given X = x

2 Optimize: integrate learning into optimization (with errors)
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Traditional Integrated Learning and Optimization

1 Use data to train your favorite ML prediction model:

f̂n(·) ∈ arg min
f (·)∈F

n∑
i=1

`(f (x i ), y i ) + ρ(f )

2 Given observed covariate X = x , use point prediction within
deterministic optimization model

min
z∈Z

c(z , f̂n(x))

• Modular: separate learning and optimization steps

• Expect to work well if (and likely only if) prediction is accurate
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Improved Integrated Learning and Optimization

Approach 1: Modify the learning step1

• Change loss function in ML training step to reflect use of
prediction within optimization model

• More challenging training problem + less modular

Approach 2 (this work): Modify the optimization step2

• Change optimization model to reflect uncertainty in prediction

Approach 3: Direct solution learning3

• Attempt to directly learn a mapping from x to a solution z

• Handling constraints and large dimensions of z is challenging

1Kao et al. (2009); Donti et al. (2017); Elmachtoub and Grigas (2017); . . .
2Ban et al. (2018); Bertsimas and Kallus (2020); Sen and Deng (2018); Bertsimas et al.

(2019); Esteban-Pérez and Morales (2020); . . .
3Bertsimas and Kallus (2020); Ban and Rudin (2018); Bazier-Matte and Delage (2020); . . .
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Problem Setup

Given

• Joint observations Dn := {(y i , x i )}ni=1 of random vectors Y , X

• New random covariate observation X = x (current context)

Want to solve

v∗(x) := min
z∈Z

E [c(z ,Y ) | X = x ]

Assume (for now)

• True model: Y = f ∗(X ) + ε with X and ε independent

=⇒ v∗(x) ≡ min
z∈Z

Eε[c(z , f ∗(x) + ε)]

• We know a function class F such that f ∗ ∈ F
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Empirical Residuals-based Sample Average Approximation

Approach suggested in Sen and Deng (2018); analyzed for a
specific application in Ban et al. (2018)

1 Estimate f ∗ using your favorite ML method ⇒ f̂n

Compute empirical residuals ε̂in := y i − f̂n(x i ), i ∈ [n]

2 Use {f̂n(x) + ε̂in}ni=1 as proxy for samples of Y given X = x

ẑERn (x) ∈ arg min
z∈Z

1

n

n∑
i=1

c(z , f̂n(x) + ε̂in) (ER-SAA)

• Modular like traditional approach

• Our contribution: general convergence analysis

• Improvements when sample size is small?

K., Bayraksan, and Luedtke. Data-driven sample average approximation with covariate information. Submitted
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New Small Sample Variant of ER-SAA

Mitigate effects of overfitting by using leave-one-out residuals

1 Estimate f ∗ separately with each data point i left out
(leave-one-out regression) ⇒ f̂−i (·) for i ∈ [n]

Compute leave-one-out residuals ε̂in := y i − f̂−i (x
i ), i ∈ [n]

2 Use {f̂n(x) + ε̂in}ni=1 or {f̂−i (x) + ε̂in}ni=1 as proxy for samples
of Y given X = x

ẑJn (x) ∈ arg min
z∈Z

1

n

n∑
i=1

c(z , f̂n(x) + ε̂in) (J-SAA)

Inspired by Jackknife methods (Barber et al., 2019)

This talk: DRO formulation around (ER-SAA) as alternative to (J-SAA)

K., Bayraksan, and Luedtke. Data-driven sample average approximation with covariate information. Submitted
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A Sampling of ER-SAA Theory

I v∗(x) = min
z∈Z

Eε[c(z , f ∗(x) + ε)]

= optimal value of true conditional SP

I ẑERn (x) = ER-SAA solution

Asymptotic optimality: the out-of-sample cost of data-driven
solutions approaches the optimal value of the true conditional SP
as the sample size increases

Eε
[
c(ẑERn (x), f ∗(x) + ε)

] p−→ v∗(x)

Setting: two-stage stochastic Mixed-Integer Linear Programs

min
z∈Z

cT
z z + E [Q(z ,Y ) | X = x ] ,

where Q(z ,Y ) := min
v∈Rdv

+

{
qT
v v : Wv = h(Y )− T (Y )z

}

See http://www.optimization-online.org/DB HTML/2020/07/7932.html for more theory + numerical experiments
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Rate of Convergence of ER-SAA Solutions

Assumption: There is a constant r ∈ (0, 1] such that the regression
procedure satisfies

• Pointwise error rate: ‖f ∗(x)− f̂n(x)‖2 = Op (n−r )
• Mean-squared estimation error rate:

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖2 = Op(n−r )

I OLS regression, Lasso satisfy assumption with r = 1
I CART, RF regression satisfy assumption with r = O(1)

dim(X )

Informal Theorem (Rate of Convergence)

Under the above assumptions, ER-SAA solution ẑERn (x) satisfies

Eε
[
c(ẑERn (x), f ∗(x) + ε)

]
= v∗(x) + Op(n−r/2)

K., Bayraksan, and Luedtke. Data-driven sample average approximation with covariate information. Submitted
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Distributionally robust optimization (DRO)

• Minimize worst-case expected cost over a set of distributions

ẑDRO
n (x) ∈ arg min

z∈Z
max

Q∈P̂n(x)
EY∼Q [c(z ,Y )]

P̂n(x) = “confidence region” for distribution of Y given X = x

• If P̂n(x) only comprises the ER-SAA distribution

P̂ER
n (x) :=

1

n

n∑
i=1

δf̂n(x)+ε̂in
,

then recover the ER-SAA solution

• Motivation: DRO regularizes small sample ER-SAA, yielding
solutions with better out-of-sample performance

K., Bayraksan, and Luedtke. Residuals-based DRO with covariate information. Submitted

Rohit Kannan Residuals-based DRO with Covariate Information April 8, 2021 17 / 33



Distributionally robust optimization (DRO)

• Minimize worst-case expected cost over a set of distributions
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Empirical Residuals-based DRO (ER-DRO)

Given ambiguity set P̂n(x) centered at P̂ER
n (x), solve

ẑDRO
n (x) ∈ arg min

z∈Z
sup

Q∈P̂n(x)

EY∼Q [c(z ,Y )]

Examples of ambiguity sets P̂n(x):

• Wasserstein ambiguity sets of order p ∈ [1,+∞):

P̂n(x) :=
{

distributions Q such that the p-Wasserstein distance

between Q and P̂ER
n (x) ≤ ζn(x)

}
• Other ambiguity sets based on phi-divergences, sample robust

optimization, . . .

K., Bayraksan, and Luedtke. Residuals-based DRO with covariate information. Submitted
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Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level α ∈ (0, 1), there exists a constant
κp,n(α, x) > 0 such that the regression procedure satisfies

P
{
‖f ∗(x)− f̂n(x)‖p > κpp,n(α, x)

}
≤ α, and

P
{

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖p > κpp,n(α, x)

}
≤ α.

Example: holds for Wasserstein order p = 2 and

I OLS, Lasso with κ2
2,n(α, x) = O(n−1 log(α−1))

I CART, RF with κ2
2,n(α, x) = O(n−1 log(α−1))O(1)/dx
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P
{

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖p > κpp,n(α, x)

}
≤ α.

Given covariate realization x and risk level α ∈ (0, 1), use

ζn(α, x) := 2κp,n
(
α
4 , x
)

+ κ̄p,n
(
α
2

)
as the radius of the Wasserstein ambiguity set, where

κ̄p,n
(
α
2

)
= traditional Wasserstein DRO radius that is used

if we know f ∗ (Kuhn et al., 2019)

Radius guarantees that P{dW (P̂ER
n (x),PY |X=x) > ζn(α, x)} ≤ α

Rohit Kannan Residuals-based DRO with Covariate Information April 8, 2021 20 / 33



Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level α ∈ (0, 1), there exists a constant
κp,n(α, x) > 0 such that the regression procedure satisfies

P
{
‖f ∗(x)− f̂n(x)‖p > κpp,n(α, x)

}
≤ α, and

P
{

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖p > κpp,n(α, x)

}
≤ α.

Given covariate realization x and risk level α ∈ (0, 1), use

ζn(α, x) := 2κp,n
(
α
4 , x
)

+ κ̄p,n
(
α
2

)
as the radius of the Wasserstein ambiguity set, where

κ̄p,n
(
α
2

)
= traditional Wasserstein DRO radius that is used

if we know f ∗ (Kuhn et al., 2019)

Radius guarantees that P{dW (P̂ER
n (x),PY |X=x) > ζn(α, x)} ≤ α

Rohit Kannan Residuals-based DRO with Covariate Information April 8, 2021 20 / 33



Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level α ∈ (0, 1), there exists a constant
κp,n(α, x) > 0 such that the regression procedure satisfies

P
{
‖f ∗(x)− f̂n(x)‖p > κpp,n(α, x)

}
≤ α, and

P
{

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖p > κpp,n(α, x)

}
≤ α.

Given covariate realization x and risk level α ∈ (0, 1), use

ζn(α, x) := 2κp,n
(
α
4 , x
)

+ κ̄p,n
(
α
2

)
as the radius of the Wasserstein ambiguity set, where

κ̄p,n
(
α
2

)
= traditional Wasserstein DRO radius that is used

if we know f ∗ (Kuhn et al., 2019)

Radius guarantees that P{dW (P̂ER
n (x),PY |X=x) > ζn(α, x)} ≤ α

Rohit Kannan Residuals-based DRO with Covariate Information April 8, 2021 20 / 33



Flavor of Wasserstein ER-DRO Results

Informal Theorem (Finite Sample Certificate Guarantee)

For the above choice of the Wasserstein radius ζn(α, x), the
solution ẑDRO

n (x) and the optimal value v̂DRO
n (x) satisfy

P
{
Eε
[
c(ẑDRO

n (x), f ∗(x) + ε)
]
≤ v̂DRO

n (x)
}
≥ 1− α

Informal Theorem (Rate of Convergence)

Suppose there is a sequence of risk levels {αn} ⊂ (0, 1) such that∑
n αn < +∞ and the radius satisfies lim

n→∞
ζn(αn, x) = 0. Then

the sequence {ẑDRO
n (x)} of solutions satisfies

Eε
[
c(ẑDRO

n (x), f ∗(x) + ε)
]

= v∗(x) + Op(ζn(αn, x))
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Choosing the Wasserstein Radius in Practice

• Theoretical Wasserstein radius: involves unknown constants
and is typically conservative

• Use cross-validation to specify the radius ζn(x)
I Approach 1: Ignore covariate information altogether while

choosing ζn
I Approach 2: Use the data Dn to choose ζn independently of

the covariate realization X = x

I Approach 3: Use both the data Dn and the covariate
realization X = x to choose the radius ζn(x)

• Approach 3 is more data intensive than Approaches 1 & 2
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Numerical Study: Mean-Risk Portfolio Optimization
• Consider instance with 10 assets

• Uncertain returns Y generated according to

Yj = ν∗j +
3∑

l=1

µ∗jl(Xl)
θ + ε̄j + ω, ∀j ∈ {1, . . . , 10},

where ε̄j ∼ N (0, 0.02j), ω ∼ N (0, 0.02), θ ∈ {0.5, 1, 2},
dim(X ) ∈ {10, 100}

• Fit linear model with OLS/Lasso regression (even when θ 6= 1)

Yj = νj +

dim(X )∑
l=1

µjlXl + ηj , ∀j ∈ {1, . . . , 10},

where ηj are zero-mean errors

• Estimate optimality gap of solutions ẑERn (x) and ẑDRO
n (x)
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Results with OLS and Correct Model Class (θ = 1)

I∗: Ideal Wasserstein radius (only for benchmarking)
1 & 2: Wasserstein radius specified using Approaches 1 & 2
E: ER-SAA + OLS

Lower y-axis value =⇒ closer to optimal
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Boxes: 25, 50, and 75 percentiles of upper confidence bounds
Whiskers: 2 and 98 percentiles
Sample sizes: {1.5, 2, 3, 5} × (dim(X ) + 1)
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Results with OLS and Misspecified Model Class (θ 6= 1)

dx = 10 dx = 100
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Comparison with J-SAA for dx = 100
J: J-SAA + OLS
3 & 2: Wasserstein radius specified using Approaches 3 & 2
E: ER-SAA + OLS

Lower y-axis value =⇒ closer to optimal
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Modularity Benefit for dx = 100: Bring on Lasso

W: Wasserstein radius for ER-DRO + Lasso using Approach 2
E: ER-SAA + Lasso

Lower y-axis value =⇒ closer to optimal
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Outline

1 Introduction and Motivation

2 SAA with Covariate Information

3 DRO with Covariate Information

4 Extensions
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Handling Heteroscedastic Errors
arXiv:2101.03139

• Key assumption thus far: true model is Y = f ∗(X ) + ε with
errors ε independent of covariates X

• Assumption may be violated for some applications
I Example: variability of product demands/wind generators can

depend on seasonality/location

• Relaxed assumption: Y = f ∗(X ) + Q∗(X )ε with X , ε indep.
I Estimate f ∗ and Q∗ =⇒ estimate samples of ε
I Theoretical results for ER-SAA and ER-DRO readily generalize

K., Bayraksan, and Luedtke. Heteroscedasticity-aware residuals-based contextual stochastic optimization
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Multistage Stochastic Optimization

• Stochastic process {ξt} and i.i.d. errors {εt} satisfying

ξt = m∗t (ξt−1) + εt , ∀t ∈ Z

• Given n historical observations of the stochastic process,
estimate m∗t by m̂t,n and compute empirical residuals {ε̂in}
• Given ξt−1, use {m̂t,n(ξt−1) + ε̂in} as scenarios for stage t

• Tailored convergence analysis required since same empirical
errors used in each time stage

K., Ho-Nguyen, and Luedtke. Multistage stochastic optimization given time series data
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Concluding Remarks

Empirical residuals formulations: A modular approach to using
covariate information in optimization

• Converges under appropriate assumptions on prediction and
optimization models

• Trade-off in choosing prediction model class: using a
misspecified model can lead to better results with limited data

• Preprints on Optimization Online and arXiv

Future research directions

• Formulations with stochastic constraints, discrete recourse
decisions; robust multistage optimization

• Application to energy systems optimization
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Asymptotic Optimality of ER-SAA Solutions

Assumption: The regression procedure satisfies

• Pointwise error consistency: f̂n(x)
p−→ f ∗(x) for a.e. x

• Mean-squared estimation error consistency:

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖2 p−→ 0.

Informal Theorem (Asymptotic Optimality)

Under the above assumptions† , the ER-SAA solution ẑERn (x) is
asymptotically optimal for a.e. x , i.e.,

Eε
[
c(ẑERn (x), f ∗(x) + ε)

] p−→ v∗(x)

†Plus some mild standard assumptions on the true conditional SP
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Rate of Convergence of ER-SAA Solutions

Assumption: There is a constant r ∈ (0, 1] such that the regression
procedure satisfies

• Pointwise error rate: ‖f ∗(x)− f̂n(x)‖2 = Op (n−r )

• Mean-squared estimation error rate:

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖2 = Op(n−r )

I OLS regression, Lasso satisfy assumption with r = 1

I CART, RF regression satisfy assumption with r = O(1)
dim(X )

Informal Theorem (Rate of Convergence)

Under the above assumptions, ER-SAA solution ẑERn (x) satisfies

Eε
[
c(ẑERn (x), f ∗(x) + ε)

]
= v∗(x) + Op(n−r/2)
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Finite Sample Guarantees for ER-SAA Solutions

Define

I ŜER
n (x) := set of optimal solutions to ER-SAA

I Sκ(x) := set of κ-optimal solutions to the true conditional SP,
i.e., points in Z with objective value ≤ v∗(x) + κ

Assumption: The errors ε are sub-Gaussian (light tail distribution)

Given: target optimality gap κ > 0, unreliability level δ ∈ (0, 1)

Goal: Estimate sample size n required for

P
{
ŜER
n (x) ⊆ Sκ(x)

}
≥ 1− δ,

i.e., with probability ≥ 1− δ, optimal solutions of ER-SAA are
κ-optimal to the true conditional SP
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Finite Sample Guarantees for ER-SAA Solutions

Estimate sample size n required for P
{
ŜER
n (x) ⊆ Sκ(x)

}
≥ 1− δ

• If f ∗ is linear and we use OLS regression, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ dy log

(
O(1)

δ

)
+ dxdy

]
• If f ∗ is s-sparse linear and we use the Lasso, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ sdy log

(
O(1)

δ

)
+ s log(dx)dy

]
• If f ∗ is Lipschitz and we use kNN regression, then require

n ≥ O(1)dz
κ2

log

(
O(1)

κ

)
+

(
O(1)dy
κ2

)dx [
dx log

(
O(1)dxdy

κ2

)
+ log

(
O(1)

δ

)]
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Numerical Study: Optimal Resource Allocation

min
z≥0

cTz + EY [Q(z ,Y )]

I zi : quantity of resource i ∈ I (order before demands realized)

I Yj : uncertain demand of customer type j ∈ J

Q(z ,Y ) := min
w ,v≥0

dTw

s.t.
∑
j∈J

vij ≤ zi , ∀i ∈ I,

∑
i∈I

µijvij + wj ≥ Yj , ∀j ∈ J .

I vij : amount of resource i allocated to customer type j

I wj : amount of customer type j demand that is not met

I µij ≥ 0: service rate of resource i for customer type j
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Numerical Study: Optimal Resource Allocation

• Meet demands of 30 customer types for 20 resources

• Uncertain demands Y generated according to

Yj = α∗j +
3∑

l=1

β∗jl(Xl)
θ + εj , ∀j ∈ {1, · · · , 30},

where εj ∼ N (0, σ2
j ), θ ∈ {0.5, 1, 2}, dim(X ) ∈ {10, 100}

• Fit linear model with OLS/Lasso regression (even when θ 6= 1)

Yj = αj +

dim(X )∑
l=1

βjlXl + ηj , ∀j ∈ {1, · · · , 30},

where ηj are zero-mean errors

• Estimate optimality gap of solutions ẑERn (x) and ẑJn (x)
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Results with Correct Model Class (θ = 1)

Red (E): ER-SAA + OLS

Black (k): Reweighted SAA with kNN (Bertsimas and Kallus, 2020)

Lower y-axis value =⇒ closer to optimal
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Results with Misspecified Model Class (θ 6= 1)

Red (E): ER-SAA + OLS, Black (k): Reweighted SAA with kNN
dx = 10 dx = 100
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Advantage of J-SAA with Limited Data (θ = 1)

Red (E): ER-SAA + OLS, Green (J): J-SAA + OLS

Lower y-axis value =⇒ closer to optimal
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Modularity Benefit: Bring on Lasso (θ = 1)

Red (E): ER-SAA + OLS, Blue (L): ER-SAA + Lasso

Lower y-axis value =⇒ closer to optimal
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Lasso Results with Misspecified Model Class (θ 6= 1)

Red (E): ER-SAA + OLS, Blue (L): ER-SAA + Lasso
dx = 10 dx = 100

θ = 0.5

θ = 2
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