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Global Optimization of Two-Stage Stochastic Programs

• Complexity of generic B&B grows
exponentially with number of scenarios

• Designed first fully-decomposable
algorithm with provable convergence

Paul Barton

(MIT CHE)

Avinash Subramanian

(SINTEF)

Truls Gundersen

(NTNU Energy)

  0

  1

 10

100

1000

10000

  0  10  20  30  40  50

S
o

lv
e

r 
T

im
e

 (
s
)

scenarios

NGBD
LR

ANTIGONE 1.1
BARON 16.3.4
COUENNE 0.5

SCIP 3.2

NGBD & LR: decomposition methods
Rest: State-of-the-art solvers

K. and Barton. Integrating Benders decomposition and Lagrangian relaxation for solving two-stage stochastic MINLPs

K. and Barton. GOSSIP: Decomposition software for the global optimization of two-stage stochastic MINLPs

Subramanian, K., et al. Optimization under uncertainty of a hybrid waste tire & natural gas flexible polygeneration system
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Analysis of the Complexity of B&B Algorithms
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McCormick Relaxations

• B&B bounding methods may suffer
from the “cluster problem”

• Built theory to understand which
bounding methods can avoid this
I Important implications for design

of reduced-space B&B algorithms
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Natural Interval Extensions

Cluster Model 1

Centered Form

Cluster Model 2

McCormick Relaxations

K. and Barton (2018). The cluster problem in constrained global optimization. J. Global Optim.

K. and Barton (2018). Convergence-order analysis of B&B algorithms for constrained problems. J. Global Optim.
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Stochastic Approximation for Chance Constraints

ν∗α := min
x∈X

f (x)

s.t. P{g(x , ξ) ≤ 0} ≥ 1− α
Jim Luedtke

(UW-Madison ISyE)

• Previous approaches are either suboptimal, or do not scale

• Designed a stochastic subgradient method for approximating
the efficient frontier of cost versus risk (ν∗α vs α)
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K. and Luedtke (2021). A stochastic approximation method for chance-constrained NLPs. Math. Prog. Comput.
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Better Integration of Renewables in the Power Grid

• Generators balance renewables variability by
activating reserves via piecewise-affine policy
I Less conservative than forcing affine policy to

be feasible with high probability

• Tailored decomposition method for DC-OPF.
Our approach yields solutions with

Gen. Output Affine Policy

Min

Nominal

Max
Piecewise-Affine

Policy
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and Wind
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�: our approach. ∆: generator penalty. ◦ and ×: chance constraints

Line Roald
(UW-Madison ECE)

K., Luedtke, and Roald (2020). Stochastic DC-OPF with reserve saturation. Electric Power Systems Research
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Optimization Under Uncertainty
General optimization model with uncertain parameters Y :

min
z∈Z

c(z ,Y )

• Z is the feasible region (assume known) for decisions z

• Y is a vector of uncertain parameters ⇒ ill-posed problem

Popular modeling approaches:

1 Stochastic: assuming distribution of Y known, minimize
expected/average system cost

min
z∈Z

EY [c(z ,Y )]

2 Robust: assuming support of Y known, minimize
worst-case system cost

min
z∈Z

max
y∈Y

c(z , y)
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Traditional Data-Driven Stochastic Programming
• Traditional SP: minimize expected system cost assuming

feasible region Z and distribution of Y known

min
z∈Z

EY [c(z ,Y )]

• Data-driven SP: have access to samples {y i}ni=1 of Y

min
z∈Z

EY [c(z ,Y )] ≈ min
z∈Z

1

n

n∑
i=1

c(z , y i ) (SAA)

• Sample Average Approximation theory: as sample size n→∞,
optimal value and solutions converge at the rate Op(n−1/2)

How can we use covariates X to better predict the random vector Y ?

Jim Luedtke

(UW-Madison ISyE)

Güzin Bayraksan

(OSU ISE)

Nam Ho-Nguyen

(USYD Business)
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Stochastic Programming with Covariate Information

Power Grid Scheduling

Y : Load; Renewable energy outputs

X : Weather observations; Time/Season

z: Generator scheduling decisions

Production Planning/Scheduling

Y : Product demands; Prices

X : Seasonality; Web search results

z: Production and inventory decisions

Portfolio Optimization

Y : Stock returns

X : Historical returns; Economic indicators

z: Investment decisions
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Stochastic Programming with Covariate Information

• Assume we have uncertain parameter and covariate data pairs

Dn := {(y i , x i )}ni=1

• When making decision z , we observe a new covariate X = x

• Goal: minimize expected cost given covariate observation x :

min
z∈Z

E [c(z ,Y ) | X = x ]

• Challenge: Dn may not include covariate observation X = x

• How to construct data-driven approximation to conditional SP?

1 Learn: predict Y given X = x

2 Optimize: integrate learning into optimization (with errors)

• Assume Y = f ∗(X ) + Q∗(X )ε with X and ε independent
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Traditional Integrated Learning and Optimization

1 Use data to train your favorite ML prediction model:

f̂n(·) ∈ arg min
f (·)∈F

n∑
i=1

`(f (x i ), y i ) + ρ(f )

2 Given observed covariate X = x , use point prediction within
deterministic optimization model

min
z∈Z

c(z , f̂n(x))

• Modular: separate learning and optimization steps

• Expect to work well only if prediction is highly accurate

• Many recently proposed improvements in the literature, e.g.,
Ban and Rudin (2019); Bertsimas and Kallus (2020); Deng and Sen

(2022); Donti et al. (2017); Elmachtoub and Grigas (2022)
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Empirical Residuals-based Sample Average Approximation

1 Estimate f ∗,Q∗ using your favorite ML method ⇒ f̂n, Q̂n

Compute empirical residuals ε̂in := [Q̂n(x i )]−1
(
y i − f̂n(x i )

)
, i ∈ [n]

2 Use {f̂n(x) + Q̂n(x)ε̂in}ni=1 as proxy for samples of Y given X = x

min
z∈Z

1

n

n∑
i=1

c(z , f̂n(x) + Q̂n(x)ε̂in) (ER-SAA)

• Modular like traditional approach

Contributions:

• General convergence analysis

• Improvements when sample size is small

• Extension to dynamic/sequential decision-making

K., Bayraksan, and Luedtke. Data-driven SAA with covariate information. arXiv:2207.13554. Under Revision

K., Bayraksan, and Luedtke. Residuals-based DRO with covariate information. arXiv:2012.01088. Under Review

K., Ho-Nguyen, and Luedtke. Data-driven multistage stochastic optimization on time series. Working Paper
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New Small Sample Variant of ER-SAA

Mitigate effects of overfitting by using leave-one-out residuals

1 Estimate f ∗,Q∗ separately with each data point i left out
(leave-one-out regression) ⇒ f̂−i (·), Q̂−i (·) for i ∈ [n]

Compute leave-one-out residuals ε̂in := [Q̂−i (x
i )]−1

(
y i − f̂−i (x

i )
)
, i ∈ [n]

2 Use {f̂n(x) + Q̂n(x)ε̂in}ni=1 or {f̂−i (x) + Q̂−i (x)ε̂in}ni=1 as proxy
for samples of Y given X = x

min
z∈Z

1

n

n∑
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Distributionally robust optimization (ER-DRO)

• Minimize worst-case expected cost over a set of distributions

ẑDRO
n (x) ∈ arg min

z∈Z
max

Q∈P̂n(x)
EY∼Q [c(z ,Y )]

P̂n(x) = “confidence region” for distribution of Y given X = x

• P̂n(x) :=
{

1

n

n∑
i=1

δf̂n(x)+Q̂n(x)ε̂in

}
=⇒ ER-SAA

• Motivation: DRO regularizes small sample ER-SAA, yielding
solutions with better out-of-sample performance

• Example: Wasserstein ambiguity sets of order p ∈ [1,+∞):

P̂n(x) :=
{

distributions Q such that the p-Wasserstein distance

between Q and P̂ER
n (x) ≤ ζn(x)

}

K., Bayraksan, and Luedtke. Residuals-based DRO with covariate information. arXiv:2012.01088. Under Review
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Toward Convergence Theory: Definitions

Recall

I v∗(x) = min
z∈Z

Eε[c(z , f ∗(x) + Q∗(x)ε)]

= optimal value of true conditional SP

I ẑERn (x) = ER-SAA solution

Asymptotic optimality: the out-of-sample cost of data-driven
solutions approaches the optimal value of the true conditional SP
as the sample size increases

Eε
[
c(ẑERn (x), f ∗(x) + Q∗(x)ε)

] p−→ v∗(x)

Setting: two-stage stochastic mixed-integer linear programs with
continuous recourse and r.h.s. uncertainty

From hereon, assume for simplicity that Q∗ ≡ I
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Asymptotic Optimality of ER-SAA Solutions

Assumption: The regression procedure satisfies

• Pointwise error consistency: f̂n(x)
p−→ f ∗(x) for a.e. x

• Mean-squared estimation error consistency:

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖2 p−→ 0.

Informal Theorem (Asymptotic Optimality)

Under the above assumptions†, the ER-SAA solution ẑERn (x) is
asymptotically optimal for a.e. x , i.e.,

Eε
[
c(ẑERn (x), f ∗(x) + ε)

] p−→ v∗(x)

†Plus some mild standard assumptions on the true conditional SP, see arXiv:2207.13554

Rohit Kannan Learning-Assisted Data-Driven Optimization February 6, 2023 18 / 43



Asymptotic Optimality of ER-SAA Solutions

Assumption: The regression procedure satisfies

• Pointwise error consistency: f̂n(x)
p−→ f ∗(x) for a.e. x

• Mean-squared estimation error consistency:

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖2 p−→ 0.

Informal Theorem (Asymptotic Optimality)

Under the above assumptions†, the ER-SAA solution ẑERn (x) is
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Finite-Sample Guarantees for ER-SAA Solutions

Estimate sample size n required for optimal solutions of ER-SAA
to be κ-optimal to the true conditional SP with probability ≥ 1− δ

• If f ∗ is linear and we use OLS regression, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ dy log

(
O(1)

δ

)
+ dxdy

]
• If f ∗ is s-sparse linear and we use the Lasso, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ sdy log

(
O(1)

δ

)
+ s log(dx)dy

]
• If f ∗ is Lipschitz and we use kNN regression, then require

n ≥ O(1)dz
κ2

log

(
O(1)

κ

)
+

(
O(1)dy
κ2

)dx [
dx log

(
O(1)dxdy

κ2

)
+ log

(
O(1)

δ

)]

Rohit Kannan Learning-Assisted Data-Driven Optimization February 6, 2023 19 / 43



Finite-Sample Guarantees for ER-SAA Solutions

Estimate sample size n required for optimal solutions of ER-SAA
to be κ-optimal to the true conditional SP with probability ≥ 1− δ

• If f ∗ is linear and we use OLS regression, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ dy log

(
O(1)

δ

)
+ dxdy

]

• If f ∗ is s-sparse linear and we use the Lasso, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ sdy log

(
O(1)

δ

)
+ s log(dx)dy

]

• If f ∗ is Lipschitz and we use kNN regression, then require

n ≥ O(1)dz
κ2

log

(
O(1)

κ

)
+

(
O(1)dy
κ2

)dx [
dx log

(
O(1)dxdy

κ2

)
+ log

(
O(1)

δ

)]

Rohit Kannan Learning-Assisted Data-Driven Optimization February 6, 2023 19 / 43



Finite-Sample Guarantees for ER-SAA Solutions

Estimate sample size n required for optimal solutions of ER-SAA
to be κ-optimal to the true conditional SP with probability ≥ 1− δ

• If f ∗ is linear and we use OLS regression, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ dy log

(
O(1)

δ

)
+ dxdy

]
• If f ∗ is s-sparse linear and we use the Lasso, then require

n ≥ O(1)

κ2

[
dz log

(
O(1)

κ

)
+ sdy log

(
O(1)

δ

)
+ s log(dx)dy

]
• If f ∗ is Lipschitz and we use kNN regression, then require

n ≥ O(1)dz
κ2

log

(
O(1)

κ

)
+

(
O(1)dy
κ2

)dx [
dx log

(
O(1)dxdy

κ2

)
+ log

(
O(1)

δ

)]

Rohit Kannan Learning-Assisted Data-Driven Optimization February 6, 2023 19 / 43



Choosing the Ambiguity Set Radius for Wasserstein DRO

Assumption: For any risk level α ∈ (0, 1), there exists a constant
κp,n(α, x) > 0 such that the regression procedure satisfies

P
{
‖f ∗(x)− f̂n(x)‖p > κpp,n(α, x)

}
≤ α, and

P
{

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖p > κpp,n(α, x)

}
≤ α.

Example: Finite-sample guarantee on regression step holds for p = 2 and

I OLS, Lasso with κ2
2,n(α, x) = O(n−1 log(α−1))

I CART, RF with κ2
2,n(α, x) = O(n−1 log(α−1))O(1)/dx
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Assumption: For any risk level α ∈ (0, 1), there exists a constant
κp,n(α, x) > 0 such that the regression procedure satisfies

P
{
‖f ∗(x)− f̂n(x)‖p > κpp,n(α, x)

}
≤ α, and

P
{

1

n

n∑
i=1

‖f ∗(x i )− f̂n(x i )‖p > κpp,n(α, x)

}
≤ α.

Given covariate realization x and risk level α ∈ (0, 1), use radius

ζn(α, x) := 2κp,n
(
α
4 , x
)

+ κ̄p,n
(
α
2

)
κ̄p,n

(
α
2

)
:= traditional Wasserstein radius used

if we know f ∗ (Kuhn et al., 2019)
2κp,n

(α
4
, x

)
P∗

P̂ER
n

κ̄p,n
(α

2

)

ζn(α, x)

Guarantees P{dW (P̂ER
n (x),PY |X=x) > ζn(α, x)} ≤ α
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Flavor of Wasserstein ER-DRO Results

Informal Theorem (Finite Sample Certificate)

For the above choice of the Wasserstein radius ζn(α, x), the
solution ẑDRO

n (x) and the optimal value v̂DRO
n (x) satisfy

P
{
Eε
[
c(ẑDRO

n (x), f ∗(x) + ε)
]
≤ v̂DRO

n (x)
}
≥ 1− α

Informal Theorem (Rate of Convergence)

Suppose there is a sequence of risk levels {αn} ⊂ (0, 1) such that∑
n αn < +∞ and the radius satisfies lim

n→∞
ζn(αn, x) = 0. Then

the sequence {ẑDRO
n (x)} of solutions satisfies

Eε
[
c(ẑDRO

n (x), f ∗(x) + ε)
]

= v∗(x) + Op(ζn(αn, x))
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Numerical Study: Optimal Resource Allocation
• Meet demands of 30 customer types for 20 resources

(two-stage stochastic LP with r.h.s. uncertainty)

• Uncertain demands Y generated according to

Yj = α∗j +
3∑

l=1

β∗jl(Xl)
θ + εj , ∀j ∈ {1, · · · , 30},

where εj ∼ N (0, σ2
j ), θ ∈ {0.5, 1, 2}, dim(X ) ∈ {10, 100}

• Fit linear model with OLS/Lasso regression (even when θ 6= 1)

Yj = αj +

dim(X )∑
l=1

βjlXl + ηj , ∀j ∈ {1, · · · , 30},

where ηj are zero-mean errors

• Estimate optimality gap of solutions ẑERn (x) and ẑJn (x)
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Results with Correct Model Class (θ = 1)
Green (k): ER-SAA+kNN

Blue (O): ER-SAA+OLS

Black (R): Reweighted SAA with kNN (Bertsimas and Kallus, 2020)

Lower y-axis value =⇒ closer to optimal
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Results with Misspecified Model Class (θ 6= 1)

O: ER-SAA+OLS, k: ER-SAA+kNN, R: Reweighted SAA with kNN
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Advantage of J-SAA, Modularity with Limited Data (θ = 1)

Black (J): J-SAA+OLS, Green (O): ER-SAA+OLS, Blue (L): ER-SAA+Lasso

Lower y-axis value =⇒ closer to optimal
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Part 1: Concluding Remarks

Empirical residuals formulations: A modular approach to using
covariate information in optimization

• Converges under appropriate assumptions on prediction and
optimization models

• Trade-off in choosing prediction model class: using a
misspecified model can lead to better results with limited data

• Preprints: arXiv:2207.13554 and arXiv:2012.01088 with
lots of additional theory and experiments

• Ongoing: multistage stochastic opt. for time series data

Future work

• Formulations with stochastic constraints, discrete recourse
decisions; robust multistage optimization

• Application to energy systems optimization
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Motivation
Many important applications can be formulated as nonconvex QCQPs

AC Optimal Power Flow The Pooling Problem
Inputs Pools Outputs

Often, wish to repeatedly solve instances of the same nonconvex
problem with different data, e.g., loads, wind, qualities, prices

Can we exploit shared structure to accelerate global solution?

Harsha Nagarajan

(LANL)

Deepjyoti Deka

(LANL)
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Global Optimization of QCQPs

Consider the following class of QCQPs:

ν∗ := min
x ,w

cTx + dTw

s.t. wij = xixj , ∀(i , j) ∈ B,
Ax + Bw ≤ b, x ∈ [−1, 1]dx

• The bilinear constraints are what make the problem hard
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K., Nagarajan, and Deka. Learning to Accelerate the Global Optimization of QCQPs. arXiv:2301.00306. Under Review
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Ax + Bw ≤ b, x ∈ [−1, 1]dx

• The bilinear constraints are what make the problem hard

• Get feasible solutions/upper bounds using local optimization

• Obtain lower bounds on ν∗ using relaxations

Feasible Region

Relaxation
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Relaxing Bilinear Terms
The feasible region of the hard bilinear constraints

wij = xixj , xi , xj ∈ [−1, 1] (1)

is a subset of the feasible region of the easy linear constraints
−xi − xj − 1≤ wij ≤ xi − xj + 1,

xi + xj − 1≤ wij ≤ xj − xi + 1, (2)

xi , xj ∈ [−1, 1]

Replace bilinear constraints (1) in the QCQP with
McCormick Relaxations (2) to determine a valid lower bound

ν∗ ≥ νM := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

−xi − xj − 1 ≤ wij ≤ xi − xj + 1, ∀(i , j) ∈ B,
xi + xj − 1 ≤ wij ≤ xj − xi + 1, ∀(i , j) ∈ B,
x ∈ [−1, 1]dx

Typically νM � ν∗, and the gap is closed using continuous B&B
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Tighten Relaxations By Partitioning Variable Domains

• Partition variable domains into “disjoint” subintervals, e.g.,

x1 ∈ [−1, 0] OR [0, 1]

x2 ∈ [−1, 0] OR [0, 1]

• Construct Piecewise McCormick Relaxations on the variable
partitions and solve a MIP to obtain lower bound

ν∗ ≥ νPMR := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

where pi is the vector of partitioning points for xi
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The Lower Part of the Piecewise McCormick Relaxations

Partitions: x1 ∈ [−1, 0] OR [0, 1], x2 ∈ [−1, 0] OR [0, 1]
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Refine Variable Partitions for Convergence

• Partition variable domains into “disjoint” subintervals, e.g.,

x1 ∈ [−1, 0] OR [0, 1]

x2 ∈ [−1, 0] OR [0, 1]

• Construct Piecewise McCormick Relaxations on the variable
partitions and solve a MIP to obtain lower bound

ν∗ ≥ νPMR := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

where pi is the vector of partitioning points for xi

• Refine variable partitions to close gap between νPMR and ν∗

e.g. x1 ∈ [−1,−0.5] OR [−0.5, 0] OR [0, 1]

x2 ∈ [−1, 0] OR [0, 0.2] OR [0.2, 1]
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How to Pick Partitioning Points?
Adaptive strategy in the solver Alpine (Nagarajan et al., 2019):
refine partitions around a reference point x̄ (e.g., around a
feasible point or solution to McCormick relaxation)

• Example: if x̄ = (0.3, 0) and parameter ∆ = 4

−1 10.3
( )

−0.2 0.8x̄1

width =
1−(−1)

∆

−1 10
( )

−0.5 0.5x̄2

Best choice of ∆ can vary depending on instance
(illustration on 3 random QCQPs)

∆ 4 10 15
Time for Ex1: 5087s 704s 1551s
Time for Ex2: 2632s 5023s 6642s
Time for Ex3: 3000s 4540s 1433s

Can we choose better partitioning points for faster convergence?
More partitioning points =⇒ tighter lower bounds at the

expense of harder MIPs
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Strong Partitioning (SP) to Improve Choice of Partitions

New Approach: Choose partitioning points to maximize the lower bound

p∗ ∈ arg max
p∈P

νPMR(p),

• pi is the vector of partitioning points for xi

νPMR(p) := min
x ,w

cTx + dTw

s.t. Ax + Bw ≤ b,

(xi , xj ,wij) ∈ PMRij(pi , pj), ∀(i , j) ∈ B,
x ∈ [−1, 1]dx ,

• From iteration 2, use aforementioned partitioning strategy
(guaranteed to converge irrespective of points chosen by SP)

How to solve this max-min problem (locally)?
Using generalized gradients of value function νPMR within a bundle solver

Solving this max-min problem may be as hard as solving the QCQP!
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Using ML to Accelerate Partitioning (Within Alpine)
Given family of random QCQPs of the form (Bao et al., 2009)

ν∗(θ) := min
x ,w

c(θ)Tx + d(θ)Tw

s.t. A(θ)x + B(θ)w ≤ b,

wij = xixj , ∀(i , j) ∈ B,
x ∈ [0, 1]dx

Test instances

dx ∈ {10, 20, 50}
5dx bilinear terms

dx bilinear inequalities

dx/5 linear equalities

Parameters θ vary from one instance to the next

Input: underlying problem, distribution of parameters θ
Output: ML model that predicts partitioning points given θ̄

• Generate N training samples {θi} of the problem parameters θ
• Solve max-min problem to determine “optimal” partitioning

points for each training instance
• Learn an ML model θi 7→ optimal partitioning points

(use scikit-learn’s AdaBoostRegressor with 10-fold CV)
• Use ML model to predict partitioning points for new instance θ̄
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Numerical Results for Random QCQPs
Results for dx = 20 variables

• Generate 1000 random QCQPs with varying parameters θ
• determine 2/4 SP points per variable for each instance
• Eliminate partitioning points that aren’t useful

0.5 2 5 20 50 200
Time T (seconds)

0

20

40

60

80

100

%
 in
st
an
ce
s 
so
lv
ed
 w
it
hi
n 
ti
m
e 
T

dx=20

Default
SP
ML
SP4

Speedup/
Slowdown % SP Inst. % ML Inst.

1x − 3x 13.1 48.7

3x − 5x 12.3 16.0

5x − 10x 31.2 15.3

10x − 20x 29.9 6.0

> 20x 10.0 0.9

0.5x − 1x 3.3 9.8

< 0.5x 0.2 3.3

Average Speedup (Shifted GM):
Alpine+SP: 5.1x , Alpine+ML: 2.1x

Alpine+SP4: 9x , Alpine+ML4: 2.3x
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Numerical Results for the Pooling Problem
Inputs Pools Outputs • 45 sources, 15 pools, 30 terminals, 1 quality

(124/572 variables part. in 261 bilinear terms)

• 1000 random instances with θ = input qualities

• 2 SP points per variable (total 124× 2)

• Feature dimension: 667, Output dimension: 248
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Part 2: Concluding Remarks

Strong Partitioning provides an excellent benchmark for ML to
accelerate partitioning algorithms for global optimization

• SP reduces Alpine’s solution time by 4x − 16x on average
(max. speedups of 15x − 700x)

• SP can reduce Alpine’s first iteration gap by more than 2000x!

• Off-the-shelf ML model improves Alpine’s run time by
2x − 4.5x on average (max. speedups of 10x − 200x)

Ongoing and future work

• Techniques for adaptive strong partitioning

• Investigate tailored ML models to imitate SP

• Extend SP to broader optimization classes, including MINLPs

• Explore application to AC optimal power flow
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ER-SAA
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Numerical Study: Optimal Resource Allocation

min
z≥0

cTz + EY [Q(z ,Y )]

I zi : quantity of resource i ∈ I (order before demands realized)

I Yj : uncertain demand of customer type j ∈ J

Q(z ,Y ) := min
w ,v≥0

dTw

s.t.
∑
j∈J

vij ≤ zi , ∀i ∈ I,

∑
i∈I

µijvij + wj ≥ Yj , ∀j ∈ J .

I vij : amount of resource i allocated to customer type j

I wj : amount of customer type j demand that is not met

I µij ≥ 0: service rate of resource i for customer type j
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Wasserstein ER-DRO
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Choosing the Radius for Wasserstein ER-DRO in Practice

• Theoretical Wasserstein radius: involves unknown constants
and is typically conservative

• Use cross-validation to specify the radius ζn(x)
I Approach 1: Ignore covariate information altogether while

choosing ζn
I Approach 2: Use the data Dn to choose ζn independently of

the covariate realization X = x

I Approach 3: Use both the data Dn and the covariate
realization X = x to choose the radius ζn(x)

• Approach 3 is more data intensive than Approaches 1 & 2
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Numerical Study: Mean-CVaR Portfolio Optimization

min
z∈Z

EY [−Y Tz ] + ρ CVaRβ(−Y Tz),

where Z :=
{
z ∈ Rdz

+ :
∑

i zi = 1
}

.

I zi : fraction of capital invested in asset i

I Yi : uncertain net return of asset i

I CVaRβ ≈ average of the 100(1− β)% worst return outcomes

I ρ ≥ 0 and β ∈ [0, 1): risk parameters (e.g., ρ = 10, β = 0.8)
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Numerical Study: Mean-CVaR Portfolio Optimization
• Consider instance with 10 assets

• Uncertain returns Y generated according to

Yj = ν∗j +
3∑

l=1

µ∗jl(Xl)
θ + ε̄j + ω, ∀j ∈ {1, . . . , 10},

where ε̄j ∼ N (0, 0.025j), ω ∼ N (0, 0.02), θ ∈ {0.5, 1, 2},
dim(X ) ∈ {10, 100}

• Fit linear model with OLS/Lasso regression (even when θ 6= 1)

Yj = νj +

dim(X )∑
l=1

µjlXl + ηj , ∀j ∈ {1, . . . , 10},

where ηj are zero-mean errors

• Estimate optimality gap of solutions ẑERn (x) and ẑDRO
n (x)
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Results with OLS and Correct Model Class (θ = 1)

E: ER-SAA + OLS
1, 2 & 3: Wasserstein radius specified using Approaches 1, 2 & 3

Lower y-axis value =⇒ closer to optimal
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Results with OLS and Misspecified Model Class (θ 6= 1)
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Data-Driven Multistage Stochastic Optimization on Time Series
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Numerical Study: Hydrothermal Scheduling

min
∑
t

generation & spillage costs at time t

s.t. at each time stage t :

reservoir volume increase = rainfall - generation

thermal + hydro generation = demand

bounds on reservoir height, generation amounts

• Uncertain rainfall at each time stage t
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Multistage Stochastic Optimization

Complexity of multi-stage stochastic programs can grow
significantly with the number of stages T!

Rohit Kannan Learning-Assisted Data-Driven Optimization February 6, 2023 54 / 43



Multistage Stochastic Optimization

Consider the multistage stochastic program

Vt(xt−1, ξ[t]) := min
xt∈Xt(xt−1,ξt)

ft(xt , ξt) + E
[
Vt+1(xt , ξ[t+1]) | ξ[t]

]
, t ∈ [T − 1],

VT (xT−1, ξ[T ]) := min
xT∈XT (xT−1,ξT )

fT (xT , ξT ) (MSSP)

• Decision Process: ξ1  x1  ξ2  x2  · · · ξT  xT
• Time Series: ξ[t] := (ξ1, ξ2, . . . , ξt), where {ξt} is a stochastic

process satisfying

ξt = m∗t (ξt−1, εt), ∀t ∈ Z

We deal with multi-stage stochastic LPs, where

I ft(xt , ξt) := c>t xt
I Xt(xt−1, ξt) :=

{
xt ∈ Rnt

+ : Bt(ξt)xt−1 + Atxt = ht(ξt)
}

K., Ho-Nguyen, and Luedtke. Data-driven multistage stochastic optimization on time series. Working Paper
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Problem Setup

• Given historical data from a single trajectory of {ξt}

Dn :=
{
ξ̃s , ξ̃s+1, · · · , ξ̃s+n

}
• Want to solve

V1(x0, ξ1) := min
x1∈X1(x0,ξ1)

f1(x1, ξ1) + E [V2(x1, ξ2) | ξ1] ,

where

Vt(xt−1, ξt) := min
xt∈Xt(xt−1,ξt)

ft(xt , ξt) + E [Vt+1(xt , ξt+1) | ξt ] , t ∈ [T − 1],

VT (xT−1, ξT ) := min
xT∈XT (xT−1,ξT )

fT (xT , ξT ).

• Assume
• True model: ξt = f ∗(ξt−1) + Q∗(ξt−1)εt with i.i.d. errors {εt}
• We know function classes F , Q such that f ∗ ∈ F , Q∗ ∈ Q
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Empirical Residuals-based Sample Average Approximation
Extension of the two-stage approach

1 Estimate f ∗, Q∗ using our favorite ML method ⇒ f̂n, Q̂n

Compute empirical residuals

ε̂in := [Q̂n(ξ̃s+i−1)]−1
(
ξ̃s+i − f̂n(ξ̃s+i−1)

)
, i ∈ [n]

2 Use {f̂n(ξt) + Q̂n(ξt)ε̂
i
n}ni=1 as proxy for samples of ξt+1 given ξt

V̂ ER
t,n (xt−1, ξt) := min

xt∈Xt(xt−1,ξt)
ft(xt , ξt) +

1

n

∑
j∈[n]

V̂ ER
t+1,n(xt , f̂n(ξt) + Q̂n(ξt)ε̂

i
n)

• Modular like traditional approach

• Only require a single trajectory of {ξt}
• Tailored convergence analysis required since same empirical
errors used in each time stage
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Numerical Experiments: Hydrothermal Scheduling

• Decisions zt : Hydrothermal & natural gas generation, spillage

• Random vector ξ: Amount of rainfall
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Numerical Experiments: Hydrothermal Scheduling
Assume true time series model for rainfall is of the form

ξt = (α∗t + β∗t ξt−1) exp(εt),

where α∗t = α∗t+12, β∗t = β∗t+12, εt
i.i.d.∼ N (µ,Σ)

Good fit to historical data over 8 decades!
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Numerical Experiments: Hydrothermal Scheduling

• Consider the Brazilian interconnected power system with
four hydrothermal reservoirs

• Generate a sample trajectory of {ξt} using time series model

ξt = (α∗t + β∗t ξt−1) exp(εt),

where α∗t = α∗t+12, β∗t = β∗t+12, εt
i.i.d.∼ N (µ,Σ)

• Estimate coefficients (α̂t , β̂t) such that

α̂t = α̂t+12, β̂t = β̂t+12

Use these to estimate samples of the errors εt

• Solve the ER-SAA model using SDDP.jl.
Estimate sub-optimality of ER-SAA solutions
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Results when the time series model is correctly specified

Estimate true heteroscedastic model: ξt = (α∗t + β∗t ξt−1) exp(εt)

Lower y-axis value =⇒ closer to optimal
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Results when the time series model is misspecified

Estimate seasonal additive error model: ξt = α∗t + β∗t ξt−1 + εt

Lower y-axis value =⇒ closer to optimal
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Using ML to Accelerate Global Optimization
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Using ML to Accelerate Partitioning Algorithms
Input: underlying problem, distribution of parameters θ

Output: ML model that predicts partitioning points given θ̄

• Generate 1000 training samples {θi} of problem parameters θ

• Solve max-min problem to determine “optimal” partitioning
points for each training instance

• Learn an ML model θi 7→ optimal partitioning points

• Use ML model to predict partitioning points for new instance θ̄

Use Scikit-learn’s AdaBoostRegressor to train Regression Trees
with max depth = 25, num estimators = 1000 (no tuning!)
• Features for training and prediction:
I Parameter θ
I Best found feasible solution during presolve (one local solve)
I McCormick lower bounding solution (no partitioning)

• Use 10-fold cross validation to generate predictions for {θi}
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Numerical Results for Random QCQPs
Results for dx = 10 variables

• Generate 1000 random QCQPs with varying parameters θ
• For each instance, determine 2 optimal partitioning points per

variable by solving a max-min problem
• Eliminate optimal partitioning points that aren’t useful
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1x − 2x 1.1 7.7

2x − 3x 10.2 11.4

3x − 5x 47.4 38.5

5x − 10x 40.1 40.0

> 10x 1.2 0.1

0.5x − 1x 2.1

< 0.5x 0.2

Average Speedup (Shifted GM):

Alpine+SP: 4.5x , Alpine+ML: 3.5x
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Numerical Results for Random QCQPs
Results for dx = 50 variables

• Generate 1000 random QCQPs with varying parameters θ

• 2 partitioning points per variable for each instance

• Eliminate partitioning points that aren’t useful
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1x − 5x 25.7 49.3

5x − 10x 26.3 25.3

10x − 20x 24.3 13.7

20x − 50x 14.9 5.4

> 50x 6.9 0.8

0.5x − 1x 1.5 4.8

< 0.5x 0.4 0.7

Average Speedup (Shifted GM):

Alpine+SP: 8.1x , Alpine+ML: 4.2x
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