Optimality-Based Discretization Methods for the
Global Optimization of Nonconvex Semi-Infinite Programs

Preprint: arXiv:2303.00219

Evren M. Turan

Norwegian University of Science and Technology

PanOptiC View on Global Optimization, March 10, 2023

Joint work with: Johannes Jaschke (NTNU),
Rohit Kannan (LANL)

Funding: Norwegian Research Council, Center for Nonlinear Studies at LANL



Semi-Infinite Programs (SIPs)
SIP: finite number of variables, infinite number of constraints

Design Centering Chebyshev Approximation
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Fig. 1. A disk B(x*) with maximal area in a container C.

Other applications: adversarial ML, robust optimization, model reduction, ...
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Formulation

Want global solutions to:

min f(x) (SIP)

xeX
sit. g(x,y) <0, VyeY

® nonempty compact sets X C R™ and Y C R
e f:R™ - Rand g:R™ xR — R are continuous

® no convexity/concavity assumptions on f, g, X, and Y
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Formulation

Want global solutions to:

min f(x) (SIP)

xeX
sit. g(x,y) <0, VyeY

® nonempty compact sets X C R™ and Y C R
e f:R™ - Rand g:R™ xR — R are continuous

® no convexity/concavity assumptions on f, g, X, and Y

Challenge: checking feasibility requires global solution of the
lower-level problem

G(x) == max g(x,y) (LLP)

® x € X feasible «<— G(x) <0
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Simple Examples of Semi-Infinite Constraints

A ball as a semi-infinite constraint Another semi-infinite constraint
, , xi € [0,1],
X tx <1, x; € [~1000, 1000],

2 2
> — — , Vye[-1,1
= S 26— y) <0, Yy st |y =1 22 —ba—y) Wy €11

i=1

X2
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Discretization-Based Lower Bounds

Consider an iteratively refined finite subset Y, C Yy11 C Y
(Kelley, 1960; Blankenship and Falk, 1976)

)r(r;i)rg f(x) (LBP)

sit. g(x,y) <0, Vye Y

e Can be solved directly using off-the-shelf global solvers
e Under mild assumptions every optimum of a sequence of
discretizations (LBP) converges to an optimum of (SIP)
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Discretization-Based Lower Bounds

Consider an iteratively refined finite subset Y, C Yx11 C Y
(Kelley, 1960; Blankenship and Falk, 1976)

min f(x) (LBP)

xeX
st. g(x,y) <0, Vyc Y

e Can be solved directly using off-the-shelf global solvers
® Under mild assumptions every optimum of a sequence of
discretizations (LBP) converges to an optimum of (SIP)

® Many adaptations and generalizations (Djelassi et al., 2021)
X2

X1
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How to Populate the Discretization Y)?
Assume we are given discretization Yj_1 from iteration k — 1 with
corresponding (LBP) solution x¥ € X
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How to Populate the Discretization Y)?
Assume we are given discretization Yj_1 from iteration k — 1 with
corresponding (LBP) solution x¥ € X

e Conventional Approach: Add y¥ € Y to Yj_; to exclude x¥
(based on feasibility arguments), e.g., by solving

yk € arg max g(xk,y) (LLP)
yey
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yey

e Our Approach: Add y*¥ € Y to Y,_; that results in the
highest lower bound (based on bound improvement)
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How to Populate the Discretization Y)?

Assume we are given discretization Yj_1 from iteration k — 1 with
corresponding (LBP) solution x¥ € X

e Conventional Approach: Add y¥ € Y to Yi_; to exclude x*
(based on feasibility arguments), e.g., by solving

yk € arg max g(xk,y) (LLP)
yey

e Our Approach: Add y¥ € Y to Yj_; that results in the
highest lower bound (based on bound improvement)
We directly optimize the discretization for the best bound!
X2 X2

|

X1 min Xxo X1

Conventional approach: LBD = —1 Our approach: LBD = —0.25
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The Blankenship and Falk (1976) Algorithm

A Feasibility-Based Discretization Method
Recall min f(x) (LBP)
xeX

st. g(x,y) <0, Vye Y,

G(x) := max g(x,y) (LLP)
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The Blankenship and Falk (1976) Algorithm
A Feasibility-Based Discretization Method
Recall )r;ry)rg f(x) (LBP)
s.t. g(X7}/) < 07 Vy € Yk*l
G(x) = }rpeag/( g(x,y) (LLP)

@ Initialize: Yy =0, k=1.

® Solve (LBP) to obtain candidate solution x* € X.

© Solve (LLP) at x = x* to obtain solution y* € Y and G(x¥).
O If G(x¥)>0: Y+ Y1 U{y*}, k< k+1 goto ©.

Else: terminate with x¥ as a solution to (SIP).
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The Blankenship and Falk (1976) Algorithm

A Feasibility-Based Discretization Method

Recall in f LBP
eca min (x) (LBP)

s.t. g(X7.y) < 07 Vy € Yk*l

G(x) := max g(x.,y) (LLP)

@ Initialize: Yy =0, k=1.

® Solve (LBP) to obtain candidate solution x* € X.

© Solve (LLP) at x = x* to obtain solution y* € Y and G(x¥).
O If G(x¥)>0: Y+ Y1 U{y*}, k< k+1 goto ©.

Else: terminate with x¥ as a solution to (SIP).

e Discretization updated using (LLP) solution (feasibility cuts)
® Two global solves per iteration in general
® “Workhorse” bounding method for global optimization of SIPs
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The Blankenship and Falk (1976) Algorithm
A Feasibility-Based Discretization Method
@ Initialize: Yo =0, k = 1.
® Solve (LBP) to obtain candidate solution x* € X.
© Solve (LLP) at x = x* to obtain solution y* € Y and G(x¥).
oIf G(Xk) >0 Y+ Y1 U {yk}, k < k+ 1 goto 0.
Else: terminate with x¥ as a solution to (SIP).

10

0 1 2 3 1 5 G
x
PROBLEM DP from Mitsos (2009)

X =1[0,6], Y =[2,6], f(x) = 10—x, g(x,y) = 1+exp(—y40(x—y))+X7y72
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The Blankenship and Falk (1976) Algorithm

A Feasibility-Based Discretization Method
@ Initialize: Yo =0, k = 1.
® Solve (LBP) to obtain candidate solution x* € X.
© Solve (LLP) at x = x* to obtain solution y* € Y and G(x).

O If G(x¥)>0: Y+ Y 1U{y*}, k+ k+1 goto ©.
Else: terminate with x as a solution to (SIP).

30 —g. )
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x $
PROBLEM DP from Mitsos (2009)
2
X =10,6], ¥ = [2,6], f(x) = 10-x, g(x.y) = . +x—y—2

1+ exp(—40(x — y))
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The Blankenship and Falk (1976) Algorithm

A Feasibility-Based Discretization Method
© Initialize: Yo =0, k=1.
® Solve (LBP) to obtain candidate solution x* € X.
© Solve (LLP) at x = x* to obtain solution y* € Y and G(x).

O If G(x¥)>0: Y+ Y 1U{y*}, k+ k+1 goto ©.
Else: terminate with x* as a solution to (SIP).

— [l

® Candidate
== [nfeasible
© Solution

—g(. b
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PROBLEM DP from Mitsos (2009)

X =0,6], Y = [2,6], f(x) = 10—x, g(x,y) = 1+exp(_y40(x_y))+x—y—2

4 5 6
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Optimality-Based Discretization Methods

® BF: add y¥ € Y corresponding to greatest constraint violation
® Qur Idea: add y* € Y that results in the highest lower bound
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Optimality-Based Discretization Methods

® BF: add y¥ € Y corresponding to greatest constraint violation
® Qur Idea: add y* € Y that results in the highest lower bound

® At the first iteration we solve the max-min problem:

é1(y)
y* € argmax min f(x) (max-min)
yey  xe€X
sit. g(x,y) <0
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Optimality-Based Discretization Methods

BF: add y* € Y corresponding to greatest constraint violation
Our Idea: add y* € Y that results in the highest lower bound
At the first iteration we solve the max-min problem:
#1(y)
_1 — .
y© € argmax min f(x) (max-min)
yey  xe€X
sit. g(x,y) <0

Solving to local optimality is sufficient for valid discretization
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Optimality-Based Discretization Methods

BF: add y* € Y corresponding to greatest constraint violation
Our Idea: add y* € Y that results in the highest lower bound
At the first iteration we solve the max-min problem:
#1(y)
y* € argmax min f(x) (max-min)
yey  xe€X
s.it. g(x,y) <0

Solving to local optimality is sufficient for valid discretization

Compute V¢; using sensitivity theory
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Basic sensitivity theory

® Parametric NLP: f, g twice * x*(p) and \*(p) implicitly

differentiable in x, once in p given by KKT conditions:
v*(p) = min f(x) V«<L(x,\,p) =0
g(w,p) = glx.p)=0
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® x*(p) is well defined and C* in a neighbourhood of p if
solution is LICQ and SOSC (Fiacco, 1983).

Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023 9/23



Basic sensitivity theory

e Parametric NLP: f, g twice ® x*(p) and \*(p) implicitly
differentiable in x, once in p given by KKT conditions:
v*(p) = mXin f(x) VxL(x,A,p) =0
g(w,p) =0 gx.p) =0
V2L(x*,\*, p) ng(x*,p)] [Vpx*] _ |:VXPL(X*,)\*,p):|
Vg(x*,p)T 0 VpA* V,og(x*, p)

® x*(p) is well defined and C* in a neighbourhood of p if
solution is LICQ and SOSC (Fiacco, 1983).

e kinks in x*(p) if weakly active inequalities

e results for generalized derivatives, continuity of v*(p), ...

Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023 9/23



Optimality-Based Discretization Methods

BF: add y¥ € Y corresponding to greatest constraint violation
Our Idea: add y* € Y that results in the highest lower bound

At the first iteration we solve the max-min problem:

#1(y)

7t € argmax min f(x) (max-min)
yey xeX

st g(x,y) <0
Solving to local optimality is sufficient for valid discretization

Compute V1 using sensitivity theory (treat y as parameters
of the inner min problem) assuming (Fiacco, 1983; Still, 2018)
® f and g are twice differentiable in x and once differentiable in y
® LBD yields a KKT point satisfying constraint qualifications;
if not, update discretization with the BF point !
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Optimality-Based Discretization Methods

® At iteration 1 we solve the max-min problem

o1(y")
1 - \ .
y* € argmax min f(x) (max-min)
yley xeX

s.t. g(x,y!) <o.

® Use V1 within a bundle method for nonconvex optimization

e Initialize ! with the BF point y!
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Optimality-Based Discretization Methods

® At iteration 1 we solve the max-min problem

o1(y*)
7t € argmax min f(x) (max-min)
yley xeX

s.t. g(x,yt) <o.

® Use V1 within a bundle method for nonconvex optimization

e Initialize y! with the BF point y!
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® At iteration 1 we solve the max-min problem

o1(y*)
7t € argmax min f(x) (max-min)
yley xeX

s.t. g(x,yt) <o.

® Use V1 within a bundle method for nonconvex optimization

e Initialize y! with the BF point y!
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Optimality-Based Discretization Methods

At iteration 1 we solve the max-min problem

#1(y1)

y* € argmax min f(x) (max-min)
yley xeX

s.t. g(x,y!) <o.

® Use V1 within a bundle method for nonconvex optimization
e Initialize #! with the BF point y!
® PROBLEM DP now solves with a single discretization point!
— 30 I R (CN)
. Cm{éu}um I 1A I
== [nfeasible H
® Solution 20
10
0 /2 ___________________________________ *
1 0 ------- 1 2 3 4 5 6
xT
Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023

11/ 23



Optimality-Based Discretization Methods

At iteration 1 we solve the max-min problem

o1(y"h)
1 - N .
y* € argmax min f(x) (max-min)
yley x€X

s.t. g(x,y') <0.

Use V1 within a bundle method for nonconvex optimization
Initialize ' with the BF point y!
PROBLEM DP now solves with a single discretization point!
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Optimality-Based Discretization Methods

® At iteration 1 we solve the max-min problem
é1(y1)
-1 - N .
y* € argmax min f(x) (max-min)
yley x&€X
s.t. g(x,y') <0.
® Use V¢1 within a bundle method for nonconvex optimization
e Initialize ! with the BF point y!
® PROBLEM DP now solves with a single discretization point!
0.0 6.0
-0.5 5.5
:?-1.0 :i's.o
©-1.5 <
—2.0 4.5
-2.5 40 —MMM————
3 4 5 6 -1.0 -0.5 0.0 0.5 1.0 -6 -4 -2 0 2 4 6
Yy Yy Yy
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Optimality-Based Discretization Methods

At iteration k we solve the max-min problem (Alg: GREEDY)

Pr(y¥)
k - N .
y© € argmax min f(x) (max-min)
ykey x€X

s.t. g(X’y) < 0» Vy € Yk—17
g(x,y*) <o.

® Use V¢, within a bundle method for nonconvex optimization
e Initialize y! with the BF point y!

PROBLEM DP now solves with a single discretization point!

Evren Turan

0.0 6.0
-0.5 5.5 \
=-1.0 N
3 5.0
<-1.5 <
—2.0 4.5
-2.5 40—
5 6 -1.0 -0.5 0.0 0.5 1.0 -6 -4 -2 0 2 4 6
y y
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Variants of the GREEDY Algorithm

® 2GREEDY: add two discretization points per iteration
® First, add the BF point y* to the discretization
® Next, solve a max-min problem to find an additional
discretization point y*
® Motivation: might help reduce the number of global solves

Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023 12 /23



Variants of the GREEDY Algorithm

® 2GREEDY: add two discretization points per iteration

® First, add the BF point y* to the discretization

® Next, solve a max-min problem to find an additional
discretization point y*

® Motivation: might help reduce the number of global solves

® QOPT: recompute entire discretization at each iteration

(}71,)72,---,)7k) €  argmax min f(x)

(Ly2,yk)eyk XE€X

st. g(x,y') <0, Vie€lk]

® Can switch to GREEDY/2GREEDY after K iterations (HYBRID)

Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023 12 /23



Variants of the GREEDY Algorithm

® 2GREEDY: add two discretization points per iteration
® First, add the BF point y* to the discretization
® Next, solve a max-min problem to find an additional
discretization point y*
® Motivation: might help reduce the number of global solves
® QOPT: recompute entire discretization at each iteration
(7L,7%,...,75) e argmax  min f(x)
(YLy2,yk)eyk XX

st. g(x,y') <0, Vie€lk]

® Can switch to GREEDY/2GREEDY after K iterations (HYBRID)
® Similar assumptions and routines for computing sensitivities
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Theoretical Results

Theorem (Convergence of LBD*)

Suppose that a candidate discretization Yy is determined using
Algorithm OPT, GREEDY, 2GREEDY, or HYBRID, and accepted if it
improves LBD* by 6 > 0. Then inm LBDk = v*.

—00
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Theoretical Results

Theorem (Convergence of LBD*)

Suppose that a candidate discretization Yy is determined using
Algorithm OPT, GREEDY, 2GREEDY, or HYBRID, and accepted if it
improves LBD* by § > 0. Then klim LBD* = v*.

— 00

Theorem (Convergence of OPT - convex SIP)

Suppose that (SIP) is convex with respect to x, the max-min
problem is solved to global optimality, and 9x € X such that

G(Xx) < 0. Then Algorithm OPT converges to v* in at most dx
iterations.
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Theoretical Results

Theorem (Convergence of LBD*)

Suppose that a candidate discretization Yy is determined using
Algorithm OPT, GREEDY, 2GREEDY, or HYBRID, and accepted if it
improves LBD* by § > 0. Then klim LBD* = v*,

—00

Theorem (Convergence of OPT)

Suppose {g(x,)}xex is uniformly Lipschitz continuous on Y with
Lipschitz constant Lg , > 0. If the max-min problem is solved to
global optimality, then Algorithm OPT terminates with an

diam(Y)Lg., | %

0 g 0 v g o
ef-feasible point in at most ( P iterations.

Furthermore, if {g(-,y)}ycy is uniformly Lipschitz continuous on
X with Lipschitz constant Lg . > 0, then Algorithm OPT terminates

. d : dx
in at most min { (d'amgl?Lg’y> ’, (d'amggﬂg’x + 1) } iterations.
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Numerical Results: Small-Scale Instances
® |mplemented in Julia 1.7.3, JuMP 1.3.1
® Global Solver: Baron 21.1.13, NLP Solver: Knitro 13.1.0
LP Solvers: Gurobi 9.1.2 and CPLEX 22.1.0
Bundle Solver: MPBNGC 2.0
® Absolute and Relative Optimality Tolerance: 103
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Numerical Results: Small-Scale Instances
® |mplemented in Julia 1.7.3, JuMP 1.3.1
® Global Solver: Baron 21.1.13, NLP Solver: Knitro 13.1.0
LP Solvers: Gurobi 9.1.2 and CPLEX 22.1.0
Bundle Solver: MPBNGC 2.0
® Absolute and Relative Optimality Tolerance: 103

Problem n, n, BF GREEDY 2GREEDY HYBRID

# iter. # iter. relative to BF
Watson2 2 1 2 +0% +0% +0%
Watson5 3 1 5 -20% -60% -40%
Watson 6 2 1 3 -33% -33% -33%
Watson 7 3 2 2 +0% +0% +0%
Watson8 6 2 15 -60% -73% -40%
Watson 9 6 2 9 -11% -44% -44%
Watsonh 2 1 18 +61% +6% +61%
Watsonn 2 1 3 +0% -33% +0%

® Instances from Watson (1983); all methods take ~ 1 second
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Numerical Results: Small-Scale Instances
® |mplemented in Julia 1.7.3, JuMP 1.3.1
® Global Solver: Baron 21.1.13, NLP Solver: Knitro 13.1.0
LP Solvers: Gurobi 9.1.2 and CPLEX 22.1.0
Bundle Solver: MPBNGC 2.0
® Absolute and Relative Optimality Tolerance: 103

Problem n, n, BF GREEDY 2GREEDY HYBRID

# iter. # iter. relative to BF
Watson2 2 1 2 +0% +0% +0%
Watson5 3 1 5 -20% -60% -40%
Watson 6 2 1 3 -33% -33% -33%
Watson 7 3 2 2 +0% +0% +0%
Watson8 6 2 15 -60% -73% -40%
Watson 9 6 2 9 -11% -44% -44%
Watsonh 2 1 8 +61% +6% +61%
Watsonn 2 1 3 +0% -33% +0%

® Instances from Watson (1983); all methods take ~ 1 second
® HYBRID doesn't always outperform GREEDY in practice as

max-min problem may, get stuck at local maxima
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Numerical Results: Small-Scale Instances

Problem n, n, BF GREEDY 2GREEDY HYBRID

# iter. # iter. relative to BF
Seidel 2 1 8 -75% -75% -75%
Tsoukalas 1 1 8 -38% -25% -38%
Mitsos 43 3 1 5 -20% -60% +20%
Mitsos 46 6 1 7 +14% -14% -29%
Mitsos DP 1 1 28 -93% -93% -93%

¢ Cases from Mitsos (2009); Tsoukalas and Rustem (2011);
Seidel and Kiifer (2022); all methods solve in ~ 1 second
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Numerical Results: Large-Scale Instances

Problem n, n, BF GREEDY 2GREEDY HYBRID

# iter. # iter. relative to BF
CeruliPSD1 21 5 2 +0% +0% +0%
CerulliPSD2 21 5 2 +0% +0% +0%
Cerulli PSD3 21 5 2 +0% +0% +0%
CerulliPSD4 21 5 2 +0% +0% +0%
CeruliPSD5 66 10 5 -60% +0% -60%
Cerulli PSD6 66 10 6 -67% -67% -67%
Cerulli PSD 7 105 13 7 -71% -43% -71%
Cerulli PSD 8 105 13 5 -60% +0% -60%

® QCQP problems from Cerulli et al. (2022) for constrained
quadratic regression;

® Quadratic matrices are not necessarily PSD during
intermediate iterations
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Optimality-Based Generalized Discretization Methods

Motivation: all discretization methods perform poorly on Watson h

min xp 2
X1,X2

st.oxo > —(x1 —y)?3, Vye[-1,1],
0<x <1, —1000 < x» <1000

X1
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X1

® The optimal solution mapping for the (LLP) is

y*(x) €argmax—(x1 —y)? —x» = y*(x)=x
ye[_lal]
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Optimality-Based Generalized Discretization Methods

Motivation: all discretization methods perform poorly on Watson h

min xp 2
X1,X2

st.oxo > —(x1 —y)?3, Vye[-1,1],
0<x <1, —1000 < x» < 1000

X1

® The optimal solution mapping for the (LLP) is

y*(x) €argmax—(x1 —y)? —x» = y*(x)=x
yE[—l,l]

® The BF algorithm approximates
g(x,y"(x)) <0

using the zeroth-order approximation y*(x) ~ y(x¥), i.e.,

g(x,y*(x)) = g(x,y*) <0
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Optimality-Based Generalized Discretization Methods

Motivation: all discretization methods perform poorly on Watson h

min xp 2
X1,X2

st.oxo > —(x1 —y)?3, Vye[-1,1],
0<x <1, —1000 < x» < 1000

X1

® The optimal solution mapping for the (LLP) is

y*(x) €argmax—(x1 —y)? —x» = y*(x)=x
yE[—l,l]

® The BF algorithm approximates
g(x,y"(x)) <0

using the zeroth-order approximation y*(x) ~ y(x¥), i.e.,

glxy*(x") =g(x,y*) <0
® To use a first-order approximation (Seidel and Kiifer, 2022):

v ()~ prody (v () + (26 (= x4)
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Optimality-Based Generalized Discretization Methods
Motivation: Hijazi et al. (2014)

min — ||XH2
X

dx
s.t. Z(x,- —yi)yi <0, YWyeY}
i=1

X=[-11% Y={yeR™: |y|*=d -1}
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Optimality-Based Generalized Discretization Methods

Motivation: Hijazi et al. (2014)

min — ||XH2
X

dx
s.t. Z(x,- —yi)yi <0, YWyeY}
i=1

X=[-11% Y={yeR™: |y|*=d -1}

¢ Reformulation: ||x|| < +/dx —1

=
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Optimality-Based Generalized Discretization Methods
Motivation: Hijazi et al. (2014)

min — ||XH2

s.t. Z —y)yi <0, V{yevY}

=[-L,1% Y={yeR*: |y|*=d -1}

¢ Reformulation: ||x|| < +/dx —1

3 ® every vertex of X is a solution of
Vo mmrm ok (LBP)
S i * ® Any discretization point y € Y can
% —Jr = ;T:\ exclude at most one vertex of X
e
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Optimality-Based Generalized Discretization Methods
Motivation: Hijazi et al. (2014)

min — ||XH2

s.t. Z —y)yi <0, V{yevY}

=[-L,1% Y={yeR*: |y|*=d -1}

Reformulation: [|x|| < vdx —1

® every vertex of X is a solution of

A (LBP)
S 4 I‘ * ® Any discretization point y € Y can
S —Jr e g:\ exclude at most one vertex of X

- 1:!.% . ® but projy(x) = y*(x), Vx € X
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Optimality-Based Generalized Discretization Methods

® Qur Idea: find a linear surrogate for y* that yields the highest
lower bound

(A%, b¥) € argmax min f(x)
Ak Ry Xdx xeX

bkeR%
s.t. g(x,projy (Afx 4+ b¥)) <0

g(x,projy(Aix + bi)) <0, Vie[k—1]
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Optimality-Based Generalized Discretization Methods

® Qur Idea: find a linear surrogate for y* that yields the highest
lower bound

(A%, b¥) € argmax min f(x)
Ak Ry Xdx xeX

bkeR%
s.t. g(x,projy (Afx 4+ b¥)) <0
g(x,projy(A'x + b)) <0, Vi € [k — 1]

e Initialise (A, bX) using parametric sensitivity of the (LLP) —
existence requires additional assumptions

e Similar assumptions and routines for computing sensitivities
(use smooth approximation of projy in max-min)

® Can form generalized equivalents of the previous problems,
e.g. G-GREEDY
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Optimality-Based Generalized Discretization Methods

Our Idea: find a linear surrogate for y* that yields the highest
lower bound

(A%, b¥) € argmax min f(x)
Ak Ry Xdx xeX

bkeR%
s.t. g(x,projy (Afx 4+ b¥)) <0
g(x,projy(A'x + b)) <0, Vi € [k — 1]

Initialise (AX, b%) using parametric sensitivity of the (LLP) —
existence requires additional assumptions

Similar assumptions and routines for computing sensitivities
(use smooth approximation of projy in max-min)

Can form generalized equivalents of the previous problems,
e.g. G-GREEDY

(LBP) becomes a (manageable) MINLP!
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Selected Numerical Results

® |mplemented in Julia 1.7.3, JuMP 1.3.1

® Global Solver: Baron 21.1.13
NLP Solver: Knitro 13.1.0
LP Solvers: Gurobi 9.1.2 and CPLEX 22.1.0
Bundle Solver: MPBNGC 2.0

® Absolute and Relative Optimality Tolerance: 1073

Problem n, n, BF GREEDY G-GREEDY G-2GREEDY

# iter. # iter. relative to BF
Watson 2 2 1 2 +0% +0% +0%
Watson5 3 1 5 -20% -20% -40%
Watson 6 2 1 3 -33% -33% -33%
Watson 8 6 2 15 -60% TLE -40%
Watsonh 2 1 18 +61% -89% -89%
Tsoukalas 1 1 8 -38% -75% -63%
Mitsos 43 3 1 5 -20% +0% +0%
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Conclusion

® Optimality-based discretization methods significantly reduces
# iterations for convergence on problems from the literature

® GREEDY and 2GREEDY perform the best in practice
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Conclusion

Optimality-based discretization methods significantly reduces
# iterations for convergence on problems from the literature

GREEDY and 2GREEDY perform the best in practice

The generalized methods have the potential to improve
convergence rate significantly, but harder (LBP)

Ongoing Work
® More efficient, reliable methods for solving max-min problems
® Application of max-min idea to other problem classes
® Machine Learning for optimal discretization of SIPs
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