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Semi-Infinite Programs (SIPs)

SIP: finite number of variables, infinite number of constraints

Design Centering Chebyshev Approximation

Other applications: adversarial ML, robust optimization, model reduction, . . .
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Formulation

Want global solutions to:

min
x∈X

f (x) (SIP)

s.t. g(x , y) ≤ 0, ∀y ∈ Y

• nonempty compact sets X ⊂ Rnx and Y ⊂ Rny

• f : Rnx → R and g : Rnx × Rny → R are continuous

• no convexity/concavity assumptions on f , g , X , and Y

Challenge: checking feasibility requires global solution of the
lower-level problem

G (x) := max
y∈Y

g(x , y) (LLP)

• x̄ ∈ X feasible ⇐⇒ G (x̄) ≤ 0
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Simple Examples of Semi-Infinite Constraints

A ball as a semi-infinite constraint

x21 + x22 ≤ 1,

⇐⇒
2∑

i=1

2yi (xi − yi ) ≤ 0, ∀y s.t. ∥y∥ = 1

Another semi-infinite constraint

x1 ∈ [0, 1],

x2 ∈ [−1000, 1000],

x2 ≥ −(x1 − y)2, ∀y ∈ [−1, 1]

x1

x2
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Discretization-Based Lower Bounds
Consider an iteratively refined finite subset Yk ⊊ Yk+1 ⊊ Y
(Kelley, 1960; Blankenship and Falk, 1976)

min
x∈X

f (x) (LBP)

s.t. g(x , y) ≤ 0, ∀y ∈ Yk

• Can be solved directly using off-the-shelf global solvers
• Under mild assumptions every optimum of a sequence of

discretizations (LBP) converges to an optimum of (SIP)

• Many adaptations and generalizations (Djelassi et al., 2021)

x1

x2
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How to Populate the Discretization Yk?
Assume we are given discretization Yk−1 from iteration k − 1 with
corresponding (LBP) solution xk ∈ X

• Conventional Approach: Add yk ∈ Y to Yk−1 to exclude xk

(based on feasibility arguments), e.g., by solving

yk ∈ argmax
y∈Y

g(xk , y) (LLP)

• Our Approach: Add yk ∈ Y to Yk−1 that results in the
highest lower bound (based on bound improvement)
We directly optimize the discretization for the best bound!

x1

x2

min x2

Conventional approach: LBD = −1

x1

x2

Our approach: LBD = −0.25
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The Blankenship and Falk (1976) Algorithm
A Feasibility-Based Discretization Method

Recall min
x∈X

f (x) (LBP)

s.t. g(x , y) ≤ 0, ∀y ∈ Yk−1

G (x) := max
y∈Y

g(x , y) (LLP)

1 Initialize: Y0 = ∅, k = 1.

2 Solve (LBP) to obtain candidate solution xk ∈ X .

3 Solve (LLP) at x = xk to obtain solution yk ∈ Y and G (xk).

4 If G (xk) > 0: Yk ← Yk−1 ∪ {yk}, k ← k + 1 goto 2 .

Else: terminate with xk as a solution to (SIP).

• Discretization updated using (LLP) solution (feasibility cuts)
• Two global solves per iteration in general
• “Workhorse” bounding method for global optimization of SIPs
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The Blankenship and Falk (1976) Algorithm
A Feasibility-Based Discretization Method

1 Initialize: Y0 = ∅, k = 1.

2 Solve (LBP) to obtain candidate solution xk ∈ X .

3 Solve (LLP) at x = xk to obtain solution yk ∈ Y and G (xk).

4 If G (xk) > 0: Yk ← Yk−1 ∪ {yk}, k ← k + 1 goto 2 .
Else: terminate with xk as a solution to (SIP).

PROBLEM DP from Mitsos (2009)

X = [0, 6], Y = [2, 6], f (x) = 10−x , g(x , y) =
y 2

1 + exp(−40(x − y))
+x−y−2
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Optimality-Based Discretization Methods

• BF: add yk ∈ Y corresponding to greatest constraint violation

• Our Idea: add yk ∈ Y that results in the highest lower bound

• At the first iteration we solve the max-min problem:

ȳ1 ∈ argmax
y∈Y

ϕ1(y)︷ ︸︸ ︷
min
x∈X

f (x) (max-min)

s.t. g(x , y) ≤ 0

• Solving to local optimality is sufficient for valid discretization

• Compute ∇ϕ1 using sensitivity theory
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ȳ1 ∈ argmax
y∈Y

ϕ1(y)︷ ︸︸ ︷
min
x∈X

f (x) (max-min)

s.t. g(x , y) ≤ 0

• Solving to local optimality is sufficient for valid discretization

• Compute ∇ϕ1 using sensitivity theory

Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023 8 / 23



Optimality-Based Discretization Methods

• BF: add yk ∈ Y corresponding to greatest constraint violation

• Our Idea: add yk ∈ Y that results in the highest lower bound

• At the first iteration we solve the max-min problem:
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Basic sensitivity theory

• Parametric NLP: f , g twice
differentiable in x , once in p

ν∗(p) =min
x

f (x)

g(w , p) = 0

• x∗(p) and λ∗(p) implicitly
given by KKT conditions:

∇xL(x , λ, p) = 0

g(x , p) = 0

[
∇2

xL(x
∗, λ∗, p) ∇xg(x

∗, p)
∇xg(x

∗, p)T 0

] [
∇px

∗

∇pλ
∗

]
=

[
∇xpL(x

∗, λ∗, p)
∇pg(x

∗, p)

]

• x∗(p) is well defined and C1 in a neighbourhood of p if
solution is LICQ and SOSC (Fiacco, 1983).

• kinks in x∗(p) if weakly active inequalities

• results for generalized derivatives, continuity of ν∗(p), ...
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Optimality-Based Discretization Methods

• BF: add yk ∈ Y corresponding to greatest constraint violation

• Our Idea: add yk ∈ Y that results in the highest lower bound

• At the first iteration we solve the max-min problem:

ȳ1 ∈ argmax
y∈Y

ϕ1(y)︷ ︸︸ ︷
min
x∈X

f (x) (max-min)

s.t. g(x , y) ≤ 0

• Solving to local optimality is sufficient for valid discretization
• Compute ∇ϕ1 using sensitivity theory (treat y as parameters
of the inner min problem) assuming (Fiacco, 1983; Still, 2018)
• f and g are twice differentiable in x and once differentiable in y
• LBD yields a KKT point satisfying constraint qualifications;

if not, update discretization with the BF point y1
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Optimality-Based Discretization Methods

• At iteration 1 we solve the max-min problem

ȳ1 ∈ argmax
y1∈Y

ϕ1(y1)︷ ︸︸ ︷
min
x∈X

f (x) (max-min)

s.t. g(x , y1) ≤ 0.

• Use ∇ϕ1 within a bundle method for nonconvex optimization

• Initialize ȳ1 with the BF point y1
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• Initialize ȳ1 with the BF point y1

Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023 11 / 23



Optimality-Based Discretization Methods
• At iteration 1 we solve the max-min problem
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Optimality-Based Discretization Methods
• At iteration k we solve the max-min problem (Alg: GREEDY)

ȳk ∈ argmax
yk∈Y

ϕk (y
k )︷ ︸︸ ︷

min
x∈X

f (x) (max-min)

s.t. g(x , y) ≤ 0, ∀y ∈ Yk−1,

g(x , yk) ≤ 0.

• Use ∇ϕk within a bundle method for nonconvex optimization
• Initialize ȳ1 with the BF point y1

• PROBLEM DP now solves with a single discretization point!
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Variants of the GREEDY Algorithm

• 2GREEDY: add two discretization points per iteration
• First, add the BF point yk to the discretization
• Next, solve a max-min problem to find an additional

discretization point ȳk

• Motivation: might help reduce the number of global solves

• OPT: recompute entire discretization at each iteration

(ȳ1, ȳ2, . . . , ȳk) ∈ argmax
(y1,y2,...,yk )∈Y k

min
x∈X

f (x)

s.t. g(x , y i ) ≤ 0, ∀i ∈ [k]

• Can switch to GREEDY/2GREEDY after K iterations (HYBRID)

• Similar assumptions and routines for computing sensitivities
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• OPT: recompute entire discretization at each iteration

(ȳ1, ȳ2, . . . , ȳk) ∈ argmax
(y1,y2,...,yk )∈Y k

min
x∈X

f (x)

s.t. g(x , y i ) ≤ 0, ∀i ∈ [k]

• Can switch to GREEDY/2GREEDY after K iterations (HYBRID)

• Similar assumptions and routines for computing sensitivities
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Theoretical Results

Theorem (Convergence of LBDk)

Suppose that a candidate discretization Yd is determined using
Algorithm OPT, GREEDY, 2GREEDY, or HYBRID, and accepted if it
improves LBDk by δ > 0. Then lim

k→∞
LBDk = v∗.
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Theorem (Convergence of OPT - convex SIP)

Suppose that (SIP) is convex with respect to x , the max-min
problem is solved to global optimality, and ∃x̄ ∈ X such that
G (x̄) < 0. Then Algorithm OPT converges to v∗ in at most dx
iterations.
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k→∞
LBDk = v∗.

Theorem (Convergence of OPT)

Suppose {g(x , ·)}x∈X is uniformly Lipschitz continuous on Y with
Lipschitz constant Lg ,y > 0. If the max-min problem is solved to
global optimality, then Algorithm OPT terminates with an

εf -feasible point in at most
(
diam(Y )Lg,y

2εf

)dy
iterations.

Furthermore, if {g(·, y)}y∈Y is uniformly Lipschitz continuous on
X with Lipschitz constant Lg ,x > 0, then Algorithm OPT terminates

in at most min
{(

diam(Y )Lg,y
2εf

)dy
,
(
diam(X )Lg,x

2εf
+ 1

)dx }
iterations.
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Numerical Results: Small-Scale Instances
• Implemented in Julia 1.7.3, JuMP 1.3.1
• Global Solver: Baron 21.1.13, NLP Solver: Knitro 13.1.0
LP Solvers: Gurobi 9.1.2 and CPLEX 22.1.0
Bundle Solver: MPBNGC 2.0
• Absolute and Relative Optimality Tolerance: 10−3

Problem nx ny BF GREEDY 2GREEDY HYBRID

# iter. # iter. relative to BF

Watson 2 2 1 2 +0% +0% +0%
Watson 5 3 1 5 -20% -60% -40%
Watson 6 2 1 3 -33% -33% -33%
Watson 7 3 2 2 +0% +0% +0%
Watson 8 6 2 15 -60% -73% -40%
Watson 9 6 2 9 -11% -44% -44%
Watson h 2 1 18 +61% +6% +61%
Watson n 2 1 3 +0% -33% +0%

• Instances from Watson (1983); all methods take ∼ 1 second
• HYBRID doesn’t always outperform GREEDY in practice as
max-min problem may get stuck at local maxima
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Numerical Results: Small-Scale Instances

Problem nx ny BF GREEDY 2GREEDY HYBRID

# iter. # iter. relative to BF

Seidel 2 1 8 -75% -75% -75%
Tsoukalas 1 1 8 -38% -25% -38%
Mitsos 4 3 3 1 5 -20% -60% +20%
Mitsos 4 6 6 1 7 +14% -14% -29%
Mitsos DP 1 1 28 -93% -93% -93%

• Cases from Mitsos (2009); Tsoukalas and Rustem (2011);
Seidel and Küfer (2022); all methods solve in ∼ 1 second
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Numerical Results: Large-Scale Instances

Problem nx ny BF GREEDY 2GREEDY HYBRID

# iter. # iter. relative to BF

Cerulli PSD 1 21 5 2 +0% +0% +0%
Cerulli PSD 2 21 5 2 +0% +0% +0%
Cerulli PSD 3 21 5 2 +0% +0% +0%
Cerulli PSD 4 21 5 2 +0% +0% +0%
Cerulli PSD 5 66 10 5 -60% +0% -60%
Cerulli PSD 6 66 10 6 -67% -67% -67%
Cerulli PSD 7 105 13 7 -71% -43% -71%
Cerulli PSD 8 105 13 5 -60% +0% -60%

• QCQP problems from Cerulli et al. (2022) for constrained
quadratic regression;

• Quadratic matrices are not necessarily PSD during
intermediate iterations
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Optimality-Based Generalized Discretization Methods
Motivation: all discretization methods perform poorly on Watson h

min
x1,x2

x2

s.t. x2 ≥ −(x1 − y)2, ∀y ∈ [−1, 1],
0 ≤ x1 ≤ 1, −1000 ≤ x2 ≤ 1000

x1

x2

• The optimal solution mapping for the (LLP) is

y∗(x) ∈ argmax
y∈[−1,1]

−(x1 − y)2 − x2 =⇒ y∗(x) = x1

• The BF algorithm approximates

g(x , y∗(x)) ≤ 0

using the zeroth-order approximation y∗(x) ≈ y(xk), i.e.,

g(x , y∗(xk)) := g(x , yk) ≤ 0

• To use a first-order approximation (Seidel and Küfer, 2022):

y∗(x) ≈ projY

(
y∗(xk) +

(∂y∗
∂x

(xk)
)
(x − xk)

)
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y∗(x) ≈ projY

(
y∗(xk) +

(∂y∗
∂x

(xk)
)
(x − xk)

)

Evren Turan Optimality-Based Discretization Methods for SIPs March 10, 2023 17 / 23



Optimality-Based Generalized Discretization Methods
Motivation: all discretization methods perform poorly on Watson h

min
x1,x2

x2

s.t. x2 ≥ −(x1 − y)2, ∀y ∈ [−1, 1],
0 ≤ x1 ≤ 1, −1000 ≤ x2 ≤ 1000

x1

x2

• The optimal solution mapping for the (LLP) is

y∗(x) ∈ argmax
y∈[−1,1]

−(x1 − y)2 − x2 =⇒ y∗(x) = x1

• The BF algorithm approximates

g(x , y∗(x)) ≤ 0

using the zeroth-order approximation y∗(x) ≈ y(xk), i.e.,

g(x , y∗(xk)) := g(x , yk) ≤ 0

• To use a first-order approximation (Seidel and Küfer, 2022):
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Optimality-Based Generalized Discretization Methods

Motivation: Hijazi et al. (2014)

min
x
− ∥x∥2

s.t.
dx∑
i=1

(xi − yi )yi ≤ 0, ∀{y ∈ Y }

X = [−1, 1]dx , Y = {y ∈ Rdx : ∥y∥2 = dx − 1}

• Reformulation: ∥x∥ ≤
√
dx − 1

• every vertex of X is a solution of
(LBP)

• Any discretization point y ∈ Y can
exclude at most one vertex of X

• but projY (x) = y∗(x), ∀x ∈ X
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Optimality-Based Generalized Discretization Methods

• Our Idea: find a linear surrogate for y∗ that yields the highest
lower bound

(Āk , b̄k) ∈ argmax
Ak∈Rdy×dx

bk∈Rdy

min
x∈X

f (x)

s.t. g(x , projY (A
kx + bk)) ≤ 0

g(x , projY (A
ix + bi )) ≤ 0, ∀i ∈ [k − 1]

• Initialise (Ak , bk) using parametric sensitivity of the (LLP) —
existence requires additional assumptions

• Similar assumptions and routines for computing sensitivities
(use smooth approximation of projY in max-min)

• Can form generalized equivalents of the previous problems,
e.g. G-GREEDY

• (LBP) becomes a (manageable) MINLP!
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Selected Numerical Results
• Implemented in Julia 1.7.3, JuMP 1.3.1

• Global Solver: Baron 21.1.13
NLP Solver: Knitro 13.1.0
LP Solvers: Gurobi 9.1.2 and CPLEX 22.1.0
Bundle Solver: MPBNGC 2.0

• Absolute and Relative Optimality Tolerance: 10−3

Problem nx ny BF GREEDY G-GREEDY G-2GREEDY

# iter. # iter. relative to BF

Watson 2 2 1 2 +0% +0% +0%
Watson 5 3 1 5 -20% -20% -40%
Watson 6 2 1 3 -33% -33% -33%
Watson 8 6 2 15 -60% TLE -40%
Watson h 2 1 18 +61% -89% -89%
Tsoukalas 1 1 8 -38% -75% -63%
Mitsos 4 3 3 1 5 -20% +0% +0%
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Conclusion

• Optimality-based discretization methods significantly reduces
# iterations for convergence on problems from the literature

• GREEDY and 2GREEDY perform the best in practice

• The generalized methods have the potential to improve
convergence rate significantly, but harder (LBP)

• Ongoing Work
• More efficient, reliable methods for solving max-min problems
• Application of max-min idea to other problem classes
• Machine Learning for optimal discretization of SIPs
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