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We study optimization for data-driven decision-making when we have observations of the uncertain parame-

ters within the optimization model together with concurrent observations of covariates. Given a new covariate

observation, the goal is to choose a decision that minimizes the expected cost conditioned on this observation.

We investigate three data-driven frameworks that integrate a machine learning prediction model within a

stochastic programming sample average approximation (SAA) for approximating the solution to this prob-

lem. Two of the SAA frameworks are new and use out-of-sample residuals of leave-one-out prediction models

for scenario generation. The frameworks we investigate are flexible and accommodate parametric, nonpara-

metric, and semiparametric regression techniques. We derive conditions on the data generation process, the

prediction model, and the stochastic program under which solutions of these data-driven SAAs are consistent

and asymptotically optimal, and also derive convergence rates and finite sample guarantees. Computational

experiments validate our theoretical results, demonstrate the potential advantages of our data-driven formu-

lations over existing approaches (even when the prediction model is misspecified), and illustrate the benefits

of our new data-driven formulations in the limited data regime.
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History :

1. Introduction

We study data-driven decision-making under uncertainty, where the decision-maker (DM) has

access to a finite number of observations of uncertain parameters of an optimization model together

with concurrent observations of auxiliary features/covariates. Stochastic programming (Shapiro

* I dedicate this work to my grandfather (Thatha) and to the memory of my grandmother (Thathi).
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et al. 2009, Birge and Louveaux 2011) is a popular modeling framework for decision-making under

uncertainty in such applications. A standard formulation of a stochastic program is

min
z∈Z

E [c(z,Y )] ,

where z denotes the decision variables, Y denotes the uncertain model parameters, Z denotes the

feasible region, c is a cost function, and the expectation is computed with respect to the distribution

of Y . Data-driven solution methods such as sample average approximation (SAA) traditionally

assume access to only samples of the random vector Y (Shapiro et al. 2009, Homem-de Mello and

Bayraksan 2014). However, in many real-world applications, values of Y (e.g., demand for water

and energy) are predicted using available covariate information (e.g., weather).

Motivated by the developments in Ban and Rudin (2018), Bertsimas and Kallus (2019), and Sen

and Deng (2018), we study the case in which covariate information is available and can be used

to inform the distribution of Y . Specifically, given a new random observation X = x of covariates,

the goal of the DM is to solve the conditional stochastic program

min
z∈Z

E [c(z,Y ) |X = x] . (SP)

The aim of this paper is to analyze the SAA framework when a prediction model—obtained by

statistical or machine learning—is explicitly integrated into the SAA for (SP) to leverage the

covariate observation X = x. Here, residuals of the prediction model are added on to a point

prediction of Y at X = x to construct scenarios of Y for use within the SAA. We formally define

our data-driven approximations to (SP) in Section 2.

Applications of this framework include (i) the data-driven newsvendor problem (Ban and Rudin

2018), where the product’s demand can be predicted using seasonality and location data before

making order decisions, (ii) dynamic procurement of a new product (Ban et al. 2018) whose demand

can be predicted using historical data for similar past products, (iii) shipment planning under

uncertainty (Bertsimas and Kallus 2019), where historical demands, weather forecasts, and web

search results can be used to predict products’ demands before making production and inventory

decisions, and (iv) grid scheduling under uncertainty (Donti et al. 2017), where seasonality, weather,

and historical demand data can be used to predict the load before creating generator schedules.

Formulation (SP) requires knowledge of the conditional distribution of the random variables

given a new realization of the covariates. Since this distribution is typically unknown, we are

interested in using an estimate of it to approximately solve (SP) given access to a finite set of joint

observations of (X,Y ). In this setting, we would like to construct approximations to (SP) that not

only have good statistical properties, but are also practically effective in the limited data regime.
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At a minimum, we would like a data-driven approach that is asymptotically optimal in the sense

that the objective value of its solutions approaches the optimal value of (SP) as the number of

samples increases. We would also like to determine the rate at which this convergence occurs.

Our first contribution is to generalize and analyze the approach proposed in Ban et al. (2018)

and Sen and Deng (2018), in which data-driven approximations to (SP) are constructed using

explicit models to predict the random vector Y using the covariates X. In this approach, a pre-

diction model is first used to generate a point prediction of Y at the new observation X = x. The

residuals obtained during the training of the prediction model are then added on to this point pre-

diction to construct scenarios for use within an SAA framework to approximate the solution to (SP).

We refer to this approximation as the empirical residuals-based SAA (ER-SAA). We demonstrate

asymptotic optimality, rates of convergence, and finite sample guarantees of solutions obtained

from the ER-SAA under mild assumptions. Inspired by Jackknife-based methods for constructing

prediction intervals (Barber et al. 2019), we also propose two new data-driven SAA frameworks

that use leave-one-out residuals instead of empirical residuals, and demonstrate how our analysis

can be extended to these frameworks. The motivation for these new data-driven SAA formulations

is that using leave-one-out residuals might result in a better approximation of the true conditional

distribution of Y given X = x, particularly when the sample size is small.

The prediction frameworks we analyze are flexible and accommodate parametric, nonparamet-

ric, and semiparametric regression techniques (van der Vaart 1998, Györfi et al. 2006, Wainwright

2019). While our results imply that using nonparametric regression techniques within our SAA

frameworks results in convergent approximations to (SP) under mild assumptions (cf. Bertsimas

and Kallus 2019), the rate at which such approximations converge typically exhibits poor depen-

dence on the dimension of the covariate vector X. Parametric (and semiparametric) regression

approaches, on the other hand, presume some knowledge of the functional dependence of Y on X.

If the assumed functional dependence is a good approximation of the true dependence, they may

yield significantly better solutions when the number of samples is limited. The tradeoff between

employing parametric and nonparametric regression techniques within our framework is evident

upon looking at the assumptions under which these approaches are guaranteed to yield convergent

approximations to (SP), the rates at which their optimal solutions converge, and numerical experi-

ence in Section 4. The generality of our framework enables DMs to choose the modeling approach

that works best for their application.

Besides a few exceptions (e.g., Homem-de-Mello 2008), much of the existing SAA theory (Shapiro

et al. 2009) focuses on the case when we have independent and identically distributed (i.i.d.)

samples of Y . In this work, we establish our results using an abstract set of assumptions, and

verify that our assumptions hold for i.i.d. data and for some regression setups with dependent data

satisfying widely-used mixing/stationarity assumptions.
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1.1. Relation to existing literature

The papers of Ban et al. (2018) and Sen and Deng (2018) are most closely related to this work.

Motivated by the application of dynamic procurement of a short-life-cycle product in the pres-

ence of demand uncertainty, Ban et al. (2018) propose a residual tree method for the data-driven

solution of multi-stage stochastic programs (also see references to the operations management liter-

ature therein for other data-driven approaches). They propose to use ordinary least squares (OLS)

or Lasso regression to generate demand forecasts for a new product using historical demand and

covariate data for similar products, and establish asymptotic optimality of their data-driven pro-

curement decisions for their particular application. Sen and Deng (2018) also use predictive models

to generate scenarios of random variables in stochastic programs with exogenous and endoge-

nous uncertainty when covariate information is available. They propose an empirical additive error

method that is similar to the residual tree method of Ban et al. (2018). They also consider esti-

mating distributions of the coefficients and residuals of a linear regression model and propose to

subsequently sample from these distributions to generate scenarios of the random variables. They

present model validation and model selection strategies for when the DM has access to several can-

didate prediction models. Kim and Mehrotra (2015) use empirical residuals to construct scenarios

in a computational study, but conduct no analysis of the approach.

Our work differs from the above in the following respects: we introduce a general framework that

applies for a wide range of prediction and optimization models; we establish asymptotic optimality

of the solutions from ER-SAA under general conditions; we derive results establishing rates of

convergence and finite sample guarantees of the solutions from the ER-SAA; we propose two new

frameworks that use leave-one-out residuals and extend the asymptotic optimality and rate of

convergence analysis to these frameworks; and we present an empirical study demonstrating the

potential advantage of using these frameworks, even when the prediction model is misspecified.

Bertsimas and Kallus (2019) consider approximating the solution to (SP) by solving a reweighted

SAA problem, where the weights are chosen using nonparametric regression methods based on

k-nearest neighbors (kNN), kernels, classification and regression trees (CART), or random forests

(RF). They pay particular attention to the setting where the joint observations of (X,Y ) may not

be i.i.d., but arise from a mixing process. They also consider the setting where decisions affect the

realization of the uncertainty, and establish asymptotic optimality and consistency of their data-

driven solutions. They also consider policy-based empirical risk minimization (ERM) approaches

for (SP), and develop out-of-sample guarantees for costs of decisions constructed using such policies.

Diao and Sen (2020) develop stochastic quasigradient methods for efficiently solving the kNN

and kernel-based reweighted SAA formulations of Bertsimas and Kallus (2019) without sacrificing
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theoretical guarantees. Ban and Rudin (2018) also propose a policy-based ERM approach and a

kernel regression-based nonparametric approach for solving (SP) in the context of the data-driven

newsvendor problem. They derive finite sample guarantees on the out-of-sample costs of order

decisions, and quantify the gains from using feature information under different demand models.

Bertsimas and McCord (2019) extend the analysis of Bertsimas and Kallus (2019) to the multi-

stage setting when the covariates evolve according to a Markov process. They establish asymptotic

optimality and consistency of their data-driven decisions, and also establish finite sample guarantees

for the solutions to the kNN-based approach.

Our work differs from the above in the following respects: we propose data-driven approaches

to approximate the solution to (SP) that rely on the construction of explicit models to predict the

random variables from covariates, allow for both parametric and nonparametric regression models,

and derive convergence rates and finite sample guarantees for solutions to our approximations that

complement the above analyses.

Another stream of research has been investigating methods that change the training of the

prediction model in order to obtain better solutions to (SP) (e.g., see Donti et al. 2017, Elmachtoub

and Grigas 2017, Davarnia et al. 2018). The philosophy behind these approaches is that, instead

of constructing the prediction model purely for high predictive accuracy, the DM should construct

a model to predict Y using X such that the resulting optimization decisions provide the lowest

cost solution to the true conditional stochastic program (SP). These methods result in harder joint

estimation and optimization problems that can only be solved to optimality in special settings. In

contrast, we focus on the setting where the prediction framework is independent of the stochastic

programming model. This is common in many real-world applications and facilitates easily changing

or improving the prediction model.

A ‘traditional data-driven SAA approach’ for the conditional stochastic program (SP) would

involve constructing a model to predict the random variables Y given X, fitting a distribution to the

residuals of the prediction model, and using samples from this distribution along with the prediction

model to construct scenarios for Y given X = x. While it is difficult to pin down a reference

that is the first to adopt this approach, we point to the works of Schütz et al. (2009), Royset

and Wets (2014), and the references therein for applications-motivated versions. Instead of fitting

a distribution to the residuals of the prediction model, we propose and analyze methods that

directly use empirical residuals within the SAA framework. These methods avoid the need to fit

a distribution of the residuals, and hence we expect them to be advantageous when the available

data is insufficient to provide a good estimate of the residuals distribution.
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1.2. Summary of main contributions

The key contributions of this paper are as follows:

1. We demonstrate asymptotic optimality, rates of convergence, and finite sample guarantees

of solutions to the ER-SAA formulation under mild assumptions on the data, the prediction

framework, and the stochastic programming formulation.

2. We introduce and analyze two new variants of the ER-SAA formulation that use leave-one-

out residuals instead of empirical residuals, which may lead to better solutions when data is

limited.

3. We verify that the assumptions on the underlying stochastic programming formulation hold for

a broad class of two-stage stochastic programs, including two-stage stochastic mixed-integer

programming (MIP) with continuous recourse. Additionally, we verify that the assumptions

on the prediction step hold for a broad class of M-estimation procedures and nonparametric

regression methods, including OLS, Lasso, kNN, and RF regression.

4. Finally, we empirically validate our theoretical results, demonstrate the advantages of our data-

driven SAA formulations over existing approaches in the limited data regime, and demonstrate

the potential benefit of using a structured prediction model even if it is misspecified.

2. Data-driven SAA frameworks

Recall that our goal is to approximate the solution to the conditional stochastic program (SP):

min
z∈Z

E [c(z,Y ) |X = x] ,

where X = x is a new random observation of the covariates, the expectation is taken with respect

to the conditional distribution of Y given X = x, and c is an extended real-valued function defined

on Rdz×Rdy . Let PX and PY denote the marginal distributions of the covariates X and the random

vector Y , respectively, and X ⊆Rdx and Y ⊆Rdy denote their supports.

We assume that the ‘true relationship’ between the random vector Y and the covariates X is

described by the additive error model Y = f∗(X)+ε, where f∗(x) :=E [Y |X = x] is the regression

function and the random variable ε is the associated regression error. Following previous work (Ban

et al. 2018, Sen and Deng 2018), we assume that the errors ε are independent of the covariates X

and that E [ε] = 0. We also assume that f∗ belongs to a known class of functions F with domain

a subset of Rdx and codomain a subset of Rdy . The model class F can be infinite dimensional

and depend on the number of data samples. Let Ξ denote the support of ε and Pε denote its

distribution.

Under these structural assumptions, the conditional stochastic program (SP) is equivalent to

v∗(x) := min
z∈Z
{g(z;x) :=E [c(z, f∗(x) + ε)]} , (1)
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where the expectation is computed with respect to the distribution Pε of ε. We refer to problem (1)

as the true problem, and denote its optimal solution set by S∗(x). Throughout, we assume that

the feasible set Z ⊂ Rdz is nonempty and compact, E [|c(z, f∗(x) + ε)|]<+∞ for each z ∈ Z and

almost every (a.e.) x∈X , and the function g(·;x) is lower semicontinuous on Z for a.e. x∈X (see

Theorem 7.42 of Shapiro et al. (2009) for conditions that guarantee lower semicontinuity of g(·;x)).

These assumptions ensure that problem (1) is well defined and the solution set S∗(x) is nonempty

for a.e. x∈X .

Let Dn := {(yi, xi)}ni=1 denote the joint observations of (Y,X). If the regression function f∗ is

known, then the full-information SAA counterpart to the true problem (1) using data Dn is

min
z∈Z

{
g∗n(z;x) :=

1

n

n∑
i=1

c(z, f∗(x) + εi)

}
, (2)

where {εi}ni=1 denote the realizations of the errors at the given observations, i.e., εi := yi− f∗(xi),
∀i ∈ {1, · · · , n}. We cannot solve problems (1) or (2) directly because the regression function f∗

is unknown. A practical alternative is to estimate f∗ from the data Dn, for instance by using an

M-estimator (van der Vaart 1998, van de Geer 2000) of the form

f̂n(·)∈ arg min
f(·)∈F

1

n

n∑
i=1

`
(
yi, f(xi)

)
(3)

with some loss function ` :Rdy×Rdy →R+. We sometimes assume that the regression model class F
is parameterized by θ (e.g., the parameters of an OLS regression model) and let θ∗ denote the true

value of θ corresponding to the regression function f∗. In this setting, the aim of the regression

step (3) is to estimate θ∗, and we denote the estimate corresponding to f̂n by θ̂n. Throughout,

we will reference equation (3) for the regression step with the understanding that our prediction

framework is not restricted to M-estimation.

Given an estimate f̂n of f∗, the residuals ε̂in := yi − f̂n(xi), i ∈ {1, · · · , n}, of this estimate can

be used as a proxy for samples of ε from the distribution Pε. The empirical residuals-based SAA

(ER-SAA) to problem (1) is defined as (cf. Ban et al. 2018, Sen and Deng 2018)

v̂ERn (x) := min
z∈Z

{
ĝERn (z;x) :=

1

n

n∑
i=1

c
(
z, f̂n(x) + ε̂in

)}
. (4)

We let ẑERn (x) denote an optimal solution to problem (4) and ŜERn (x) denote its optimal solution set.

We assume throughout that the set ŜERn (x) is nonempty for a.e. x∈X , which holds, for example,

if the function c(·, y) is lower semicontinuous on Z for each y ∈Rdy . We stress that problem (4) is

different from the following naive SAA (N-SAA) problem that directly uses the observations {yi}ni=1

of the random vector Y without using the new observation X = x:

v̂NSAA
n (x) := min

z∈Z

1

n

n∑
i=1

c
(
z, yi

)
. (5)
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The computational complexity of solving the ER-SAA problem (4) is similar to that of solving the

N-SAA problem (5) with the only additional computation cost being the cost of estimating the

function f∗.

We also propose two alternatives to the ER-SAA problem (4) that construct the scenarios dif-

ferently. For each i ∈ {1, . . . , n}, let f̂−i denote the estimate of f∗ obtained by omitting the data

point (yi, xi) from the training set Dn while carrying out the regression step (3), and define the

residual term ε̂in,J := yi− f̂−i(xi). The alternatives we propose are

v̂Jn(x) := min
z∈Z

{
ĝJn(z;x) :=

1

n

n∑
i=1

c
(
z, f̂n(x) + ε̂in,J

)}
, (6)

v̂J+
n (x) := min

z∈Z

{
ĝJ+
n (z;x) :=

1

n

n∑
i=1

c
(
z, f̂−i(x) + ε̂in,J

)}
. (7)

We call problems (6) and (7) Jackknife-based SAA (J-SAA) and Jackknife+-based SAA (J+-SAA),

respectively (cf. Barber et al. 2019). These data-driven SAAs are well-motivated when the data Dn
is i.i.d., in which case the leave-one-out residual ε̂in,J may be a significantly more accurate estimate

of the prediction error at the covariate observation xi than the empirical residual ε̂in, particularly

when n is small. When Dn is not i.i.d., omitting blocks of data (instead of individual observations as

in the Jackknife-based methods) during the regression steps (3) can yield better-motivated variants

of the J-SAA and J+-SAA formulations (Lahiri 2013).

Problems (6) and (7) roughly require the construction of n regression models, which may be

computationally unattractive in some settings. This extra computational burden can be alleviated

in some special settings such as OLS regression by re-using information from one regression model to

the next (see page 13 of Barber et al. (2019) for other regression setups that can re-use information).

We make use of this computational speed-up in our experiments in Section 4. A simple but less

data efficient alternative to the ER-SAA and Jackknife-based SAA frameworks is sample-splitting,

which leaves out a fraction of the data Dn from the regression step and uses the out-of-sample

residuals on the held-out data along with the regression model to construct scenarios. Another

option to mitigate the computational cost of the regression steps for large n is to use K-fold

cross-validation (CV) variants of the J-SAA and J+-SAA formulations with K� n.

We use the following two-stage stochastic linear program (LP) as our running example for prob-

lem (1). See Appendix EC.2 (in the electronic companion) for discussion of more general forms of

problem (1) that satisfy the assumptions of our framework.

Example 1 (Two-stage stochastic LP). The set Z is a nonempty convex polytope and the

function c(z,Y ) := cT
z z + Q(z,Y ), with Q(z,Y ) := min

v∈Rdv+

{qT
v v :Wv= Y −Tz}. The quantities cz,

qv, W , and T have commensurate dimensions. We assume that Q(z, y)<+∞ for each z ∈ Z and

y ∈Rdy , the matrix W has full row rank, and the dual feasible set {λ : λTW ≤ qT
v } is nonempty.
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We also use OLS regression as our running example for the regression step (3). See Appendix EC.3

(in the electronic companion) for a detailed discussion of how other prediction models fit within

our framework.

Example 2 (OLS regression). The model class is F :=
{
f(·) : f(X) = θX for some θ ∈Rdy×dx

}
,

where the constant term is included as a covariate, and the loss function is `(y, ŷ) := ‖y − ŷ‖2.

We assume that the regression function is f∗(X) = θ∗X for some θ∗ ∈Rdy×dx , and estimate θ∗ by

θ̂n ∈ arg min
θ∈Rdy×dx

1

n

n∑
i=1

‖yi− θxi‖2.

There is an inherent tradeoff between using parametric and nonparametric regression techniques

for estimating the function f∗. If the function class F is correctly specified, then the use of para-

metric regression approaches may yield much faster rates of convergence of the data-driven SAA

estimators relative to the use of nonparametric approaches (see Section 3.2). On the other hand,

misspecification of the prediction model can result in our data-driven solutions being asymptoti-

cally inconsistent and suboptimal. Empirical evidence in Section 4 indicates that it may still be

beneficial to use a misspecified prediction model when we don’t have access to an abundance

of data. Note that even if the model class F is incorrectly specified, the sequence of regression

estimates {f̂n} will converge to the best approximation of f∗ in F under mild assumptions. The

analysis in Section 3 can then be used to characterize the asymptotic properties of our data-driven

SAA estimators even though they are not guaranteed to be consistent in this case.

Notation. Let [n] denote the set {1, . . . , n}, |S| denote the cardinality of a finite set S, ‖·‖ denote

the Euclidean norm, ‖·‖0 denote the `0 “norm”, Bδ(v) denote a Euclidean ball of radius δ > 0

around a point v, and M[j] denote the jth row of a matrix M . For sets A,B ⊆Rdz , let D (A,B) :=

supv∈A dist(v,B) denote the deviation of A from B, where dist(v,B) := infw∈B‖v−w‖. A random

vector V is said to be sub-Gaussian with variance proxy σ2 if E [V ] = 0 and E [exp(suTV )] ≤

exp(0.5σ2s2), ∀s∈R and ‖u‖= 1. The abbreviations ‘a.e.’ (defined earlier), ‘LLN’, and ‘r.h.s.’ are

shorthand for ‘almost everywhere’, ‘law of large numbers’, and ‘right-hand side’. By ‘a.e. X’ and

‘a.e. Y ’, we mean PX-a.e. x∈X and PY -a.e. Y . Throughout, ‘a.s.’ is written to mean almost surely

with respect to the probability measure by which the data Dn is generated. The symbols
p−→,

a.s.−−→,

and
d−→ are used to denote convergence in probability, almost surely, and in distribution with

respect to this probability measure. For sequences of random variables {Vn} and {Wn}, the notation

Vn = op(Wn) and Vn = Op(Wn) convey that Vn = RnWn with the sequence {Rn} converging in

probability to zero (Rn
p−→ 0), or being bounded in probability, respectively (see Chapter 2 of van der

Vaart (1998) for basic theory). We write õ to hide polylogarithmic factors in n, and O(1) to denote

generic constants. We ignore measurability-related issues throughout this work (see van der Vaart

and Wellner (1996) and Shapiro et al. (2009) for detailed consideration of these issues).
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3. Analysis of the empirical residuals-based SAA

We first analyze the theoretical properties of solutions to the ER-SAA problem (4). In particular,

we investigate conditions under which solutions to problem (4) are asymptotically optimal and con-

sistent, analyze the rate of convergence of the optimal value of problem (4) to that of problem (1),

and develop finite sample guarantees for solutions to problem (4) using large deviations theory.

Omitted proofs are provided in Appendix A. We outline the modifications required to analyze the

J-SAA and J+-SAA methods in Section 3.4 (see also Appendix EC.1 in the electronic companion).

In Appendices EC.2 and EC.3, we verify that a variety of stochastic optimization and prediction

setups satisfy the assumptions made in this section.

We establish our results by bounding the ‘deviation’ of the ER-SAA problem (4) from the full-

information SAA problem (2). To facilitate this analysis, denote by ε̃in(x) the difference between

the ith ER-SAA scenario (f̂n(x) + ε̂in) and the corresponding ‘true realization’ (f∗(x) + εi) of Y

given X = x, i.e.,

ε̃in(x) :=
(
f̂n(x) + ε̂in

)
−
(
f∗(x) + εi

)
=
[
f̂n(x)− f∗(x)

]
+
[
f∗(xi)− f̂n(xi)

]
, ∀i∈ [n].

The interpretation of ε̃in(x) as the sum of the prediction error at the point x∈X and the estimation

error at the training point xi ∈X motivates our assumptions in this section.

3.1. Consistency and asymptotic optimality

We begin by investigating conditions under which the optimal value and optimal solutions to the

ER-SAA problem (4) asymptotically converge to those of the true problem (1) as the number of

data samples n tends to infinity. We make either one of the below assumptions to establish uniform

convergence of the sequence of objective functions of the ER-SAA problem (4) to the objective

function of the true problem (1) on the feasible region Z.

Assumption 1. For each z ∈Z, the function c in problem (1) satisfies the Lipschitz condition

|c(z, ȳ)− c(z, y)| ≤L(z)‖ȳ− y‖, ∀y, ȳ ∈Rdy ,

with Lipschitz constant L satisfying sup
z∈Z

L(z)<+∞.

Assumption 2. Problem (1), the regression step (3), and the data Dn satisfy for a.e. x∈X :

(2a) there exists a function δ :X →R+ such that ‖ε̃in(x)‖ ≤ δ(x), ∀i∈ [n], a.s. for n large enough,

(2b) for each z ∈Z, the function c in problem (1) satisfies for a.e. ε∈Ξ:

|c(z, ȳ)− c(z, f∗(x) + ε)| ≤Lδ(x)(z, f
∗(x) + ε)‖ȳ− (f∗(x) + ε)‖, ∀ȳ ∈Bδ(x)(f

∗(x) + ε),

with the ‘local Lipschitz constant’ Lδ(x)(z, f
∗(x) + ε) satisfying

sup
z∈Z

1

n

n∑
i=1

L2
δ(x)(z, f

∗(x) + εi) =Op(1).
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Assumption 1 requires the function c(z, ·) to be globally Lipschitz continuous for each z ∈ Z.

We show in Appendix EC.2 that it is readily satisfied by Example 1. Assumption (2b), on the

other hand, only requires the function c(z, ·) to be locally Lipschitz continuous for each z ∈ Z

with the local Lipschitz constant satisfying a uniform stochastic boundedness condition, but using

this weaker assumption necessitates the stronger Assumption (2a) on the regression step (3) in

the forthcoming results. Because the deviation terms satisfy ‖ε̃in(x)‖ ≤ ‖f∗(x)− f̂n(x)‖+‖f∗(xi)−

f̂n(xi)‖, ∀i ∈ [n], Assumption (2a) is satisfied for our running example of OLS regression, e.g.,

if the support X is compact, the population regression problem has a unique solution θ∗, the

strong pointwise LLN holds for the objective function (i.e., the empirical loss) of the regression

problem (3), and E [‖ε‖2]<+∞ (see Theorem 5.4 of Shapiro et al. (2009) for details). We present

conditions under which Assumption (2b) holds in Appendix EC.2.

The next assumption is also needed to establish uniform convergence of the sequence of objective

functions of the ER-SAA problem (4) to the objective function of the true problem (1) on Z.

Assumption 3. For a.e. x∈X , the sequence of sample average functions {g∗n(·;x)} defined in (2)

converges in probability to the true function g(·;x) defined in (1) uniformly on the set Z.

Assumption 3 is a uniform weak LLN result that is guaranteed to hold if c(·, y) is continuous for

a.e. y ∈ Y, c(·, y) is dominated by an integrable function for a.e. y ∈ Y, and the observations Dn
are i.i.d. (see Theorem 7.48 of Shapiro et al. 2009). Using pointwise LLN results in Walk (2010)

and White (2014), we can show that Assumption 3 also holds for some mixing/stationary processes

by noting that the proof of Theorem 7.48 of Shapiro et al. (2009) also extends to these settings.

Finally, we also need the following assumption on the consistency of the regression step (3).

Assumption 4. The regression procedure (3) satisfies the following consistency properties:

(4a) Pointwise error consistency: f̂n(x)
p−→ f∗(x) for a.e. x∈X ,

(4b) Mean-squared estimation error consistency:
1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖2 p−→ 0.

Assumption (4a) holds for our running example of OLS regression if the parameter estimates

θ̂n are weakly consistent (i.e., θ̂n
p−→ θ∗), and Assumption (4b) holds if, in addition, the weak

LLN 1
n

∑n

i=1‖xi‖2
p−→ E [‖X‖2] is satisfied (see Chapter 3 of White (2014) for various assump-

tions on the data Dn and the distribution PX under which these conditions hold). The quantity

1
n

∑n

i=1‖f∗(xi)− f̂n(xi)‖2 is called the empirical L2 semi-norm in the empirical process theory

literature (van de Geer 2000). Assumption 4 is implied by the stronger assumption of uniform

convergence of the estimate f̂n to the function f∗ on the support X of the covariates, i.e., when

sup
x∈X
‖f∗(x)− f̂n(x)‖ p−→ 0. Appendix EC.3 expands on the above arguments and shows that Assump-

tion 4 also holds for Lasso, kNN, and RF regression under certain conditions.
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The following result implies that the quadratic mean of the deviation terms {ε̃in(x)}ni=1 vanishes

in the limit in probability for a.e. x∈X under Assumption 4.

Lemma 1. For any x∈X , the mean-squared deviation can be bounded from above as

1

n

n∑
i=1

‖ε̃in(x)‖2 ≤ 2‖f∗(x)− f̂n(x)‖2 +
2

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖2.

Proof. Follows from ‖ε̃in(x)‖ ≤ ‖f∗(x)− f̂n(x)‖+‖f∗(xi)− f̂n(xi)‖, ∀i∈ [n], squaring both sides

of this inequality, and using the arithmetic mean-quadratic mean (AM-QM) inequality. �

Our next result establishes conditions under which the sequence of objective functions of the

ER-SAA problem (4) converges uniformly to the objective function of the true problem (1) on

the feasible region Z. We leave this proof in the main text to illustrate our proof technique and

comment on alternative assumptions under which this result holds.

Proposition 1. Suppose Assumptions 3 and 4 and either Assumption 1 or Assumption 2 hold.

Then, for a.e. x∈X , the sequence of objective functions of the ER-SAA problem (4) converges in

probability to the objective function of the true problem (1) uniformly on the feasible region Z.

Proof. We wish to show that sup
z∈Z
|ĝERn (z;x)− g(z;x)| p−→ 0 for a.e. x∈X . Note that

sup
z∈Z

∣∣ĝERn (z;x)− g(z;x)
∣∣≤ sup

z∈Z

1

n

n∑
i=1

∣∣∣c(z, f̂n(x) + ε̂in

)
− c
(
z, f∗(x) + εi

)∣∣∣+ sup
z∈Z
|g∗n(z;x)− g(z;x)|.

The second term on the r.h.s. of the above inequality vanishes in the limit in probability under

Assumption 3. If the first term also vanishes in the limit in probability, by op(1) + op(1) = op(1),

we obtain the desired result. We now show that the first term vanishes in the limit in probability.

First, suppose Assumption 1 holds. We then have for a.e. x∈X :

sup
z∈Z

1

n

n∑
i=1

∣∣∣c(z, f̂n(x) + ε̂in

)
− c
(
z, f∗(x) + εi

)∣∣∣≤ sup
z∈Z

1

n

n∑
i=1

L(z)‖ε̃in(x)‖ ≤
(

sup
z∈Z

L(z)

)√√√√ 1

n

n∑
i=1

‖ε̃in(x)‖2,

where the last step follows from the AM-QM inequality. Now, the result follows from Lemma 1,

Assumption 4, and the continuous mapping theorem. Next, suppose instead that Assumption 2

holds. Note that for a.e. x∈X , we a.s. have for n large enough:

sup
z∈Z

1

n

n∑
i=1

∣∣∣c(z, f̂n(x) + ε̂in

)
− c
(
z, f∗(x) + εi

)∣∣∣≤ sup
z∈Z

1

n

n∑
i=1

Lδ(x)(z, f
∗(x) + εi)‖ε̃in(x)‖

≤ sup
z∈Z

√√√√ 1

n

n∑
i=1

L2
δ(x)(z, f

∗(x) + εi)

√√√√ 1

n

n∑
i=1

‖ε̃in(x)‖2,

where the last step follows from the Cauchy-Schwarz inequality. The result then follows from

Assumptions 2 and 4, Lemma 1, the continuous mapping theorem, and Op(1)op(1) = op(1). �
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Remark 1. Assumption (4b) can be weakened to 1
n

∑n

i=1‖f∗(xi)− f̂n(xi)‖ p−→ 0 when Assumption 1

holds. We stick with the stronger Assumption (4b) throughout for uniformity.

Proposition 1 provides the foundation for the following result, which demonstrates that the

optimal value and solutions of the ER-SAA problem (4) converge to those of the true problem (1).

Theorem 1. Suppose Assumptions 3 and 4 and either Assumption 1 or Assumption 2 hold. Then,

we have v̂ERn (x)
p−→ v∗(x), D

(
ŜERn (x), S∗(x)

)
p−→ 0, and sup

z∈ŜERn (x)

g(z;x)
p−→ v∗(x) for a.e. x∈X .

The proof of Theorem 1 follows a similar outline as the proof of Theorem 5.3 of Shapiro et al.

(2009), with a key difference being that we consider convergence in probability rather than almost

sure convergence. Under an inf-compactness condition on the ER-SAA problem (4), the conclusions

of Theorem 1 hold even if the set Z is unbounded (see the discussion following Theorem 5.3 of

Shapiro et al. 2009). While we consider convergence in probability instead of almost sure conver-

gence (because the statistics literature is typically concerned with conditions under which Assump-

tion 4 holds rather than its almost sure counterpart), note that our results until this point can be

naturally extended to the latter setting by suitably strengthening Assumptions 2, 3, and 4.

3.2. Rates of convergence

We next investigate the rate of convergence of the optimal objective value of the sequence of ER-

SAA problems (4) to that of the true problem (1). This analysis requires the following additional

assumptions on the true problem (1) and the regression step (3).

Assumption 5. The function c in problem (1) and the data Dn satisfy:

(5a) the function c(·, y) is continuous on the set Z for each y ∈Rdy ,

(5b) the following functional central limit theorem (CLT) for the full-information SAA objective:

√
n (g∗n(·;x)− g(·;x))

d−→ V (·;x), for a.e. x∈X ,

where V (·;x) is a random element of L∞(Z), the Banach space of essentially bounded functions

on Z equipped with the supremum norm.

Appendix EC.2 verifies that Assumption (5a) holds for Example 1 under mild conditions. It can

be weakened to assume that c(·, y) is continuous for each y in a neighborhood of Y if Assump-

tion (2a) holds. Assumption (5b) holds, for instance, when the data Dn are i.i.d., the function c(·, y)

is Lipschitz continuous on Z for a.e. y ∈ Y with an L2(Y) Lipschitz constant, and, for a.e. x ∈X ,

there exists z̃ ∈ Z such that E
[
(c(z̃, f∗(x) + ε))

2]
<+∞ (see page 164 of Shapiro et al. (2009) for

details). Theorem 1 of Doukhan et al. (1995), Theorem 2.1 of Arcones and Yu (1994), Theorem 9

of Arcones (1994), and Corollary 2.3 of Andrews and Pollard (1994) provide conditions under which
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the functional CLT holds under mixing assumptions on the data Dn. Theorems 1.5.4 and 1.5.6

of van der Vaart and Wellner (1996) present a general set of conditions under which the functional

CLT holds.

The next assumption, which strengthens Assumption 4, ensures that the deviation of the ER-

SAA problem (4) from the full-information SAA problem (2) converges at a certain rate.

Assumption 6. There is a constant 0< α≤ 1 (that is independent of the number of samples n,

but could depend on the dimension dx of the covariates X) such that the regression procedure (3)

satisfies the following asymptotic convergence rate criteria:

(6a) Pointwise error rate: ‖f∗(x)− f̂n(x)‖2 =Op (n−α) for a.e. x∈X ,

(6b) Mean-squared estimation error rate:
1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖2 =Op(n
−α).

Note that the Op(·) terms in Assumption 6 hide factors proportional to the dimension dy of the

random vector Y . Along with Lemma 1, Assumption 6 implies that 1
n

∑n

i=1‖ε̃in(x)‖2 =Op(n
−α) for

a.e. x∈X . For our running example of OLS regression, Assumption 6 holds with α= 1, independent

of the dimension dx of X, under mild assumptions on the data Dn and the distribution PX of the

covariates (see Chapter 5 of White 2014). A similar rate holds for Lasso, best subset selection, and

many other parametric regression procedures under mild assumptions. Nonparametric regression

procedures such as kNN and RF regression, on the other hand, typically only satisfy this assumption

with constant α= O(1)

dx
. This rate cannot be improved upon in general, and is commonly referred

to as the curse of dimensionality. Structured nonparametric regression methods such as sparse

additive models (Raskutti et al. 2012) can hope to break the curse of dimensionality and achieve

rates with α= 1. Appendix EC.3 verifies that Assumption 6 holds for these prediction setups with

the stated constants α.

Our main result of this section extends Theorem 5.7 of Shapiro et al. (2009) to establish a rate

at which the optimal objective value of the ER-SAA problem (4) converges to that of the true

problem (1). We hide the dependence of the convergence rate on the dimensions dx and dy of the

covariates X and random vector Y . In the next section we discuss how these dimensions affect

the rate of convergence via a non-asymptotic/finite sample analysis. Note that the convergence

rate analysis in Theorem 5.7 of Shapiro et al. (2009) for the full-information SAA problem (2) is

sharper in the sense that it also characterizes the asymptotic distribution of the optimal objective

value, see equations (5.25) and (5.26) therein.

Theorem 2. Suppose Assumptions 5 and 6 hold, the objective function of the true problem (1) is

continuous on Z for a.e. x ∈ X , and either Assumption 1 or Assumption 2 holds. Then, we have

v̂ERn (x) = v∗(x) + õp(n
−α2 ) for a.e. x∈X .



Kannan, Bayraksan, and Luedtke: Data-driven SAA with covariate information
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 15

Proposition 1 implies that |g(ẑERn (x);x)− v̂ERn (x)| = õp(n
−α2 ) under the assumptions of Theo-

rem 2, which then implies that the estimator ẑERn (x) satisfies |g(ẑERn (x);x)− v∗(x)| = õp(n
−α2 ).

Note that Theorem 7.43 of Shapiro et al. (2009) lists conditions under which the function g(·;x) is

continuous on Z for a.e. x∈X .

3.3. Finite sample guarantees

Finally, we establish a lower bound on the probability that the solution of the ER-SAA problem (4)

is nearly optimal to the true problem (1). These assumptions are motivated by the analysis in

Section 2 of Homem-de-Mello (2008) and Section 7.2.9 of Shapiro et al. (2009).

Assumption 7. The full-information SAA problem (2) possesses the following uniform exponential

bound property: for any constant κ > 0 and a.e. x ∈ X , there exist positive constants K(κ,x) and

β(κ,x) such that P
{

sup
z∈Z
|g∗n(z;x)− g(z;x)|>κ

}
≤K(κ,x) exp (−nβ(κ,x)), ∀n∈N.

Lemma 2.4 of Homem-de-Mello (2008) provides conditions under which Assumption 7 holds (also

see Section 7.2.9 of Shapiro et al. 2009). In particular, Homem-de-Mello (2008) shows that Assump-

tion 7 holds whenever the function c(·, y) is Lipschitz continuous on Z for a.e. y ∈Y with an inte-

grable Lipschitz constant and some pointwise exponential bound conditions hold. When the data

Dn is i.i.d., Section 7.2.9 of Shapiro et al. (2009) presents conditions under which these pointwise

exponential bound conditions are satisfied via Cramér’s large deviation theorem. Bryc and Dembo

(1996) presents mixing conditions on the observations Dn under which these assumptions are also

satisfied (also see the references therein). The Gärtner-Ellis Theorem (see Section 2.3 of Dembo and

Zeitouni 2010) provides an alternative avenue for verifying Assumption 7 for non-i.i.d. data Dn (Dai

et al. 2000). If we also assume that the random variables c(z, f∗(x) + ε)− E [c(z, f∗(x) + ε)] are

sub-Gaussian for each z ∈ Z and a.e. x ∈ X , then we can characterize the dependence of β(κ,x)

on κ, see Assumption (C4) on page 396 and Theorem 7.67 of Shapiro et al. (2009).

We make the following large deviation assumption on the regression procedure (3) that is similar

in spirit to Assumption 7.

Assumption 8. The regression procedure (3) possesses the following large deviation properties: for

any constant κ> 0, there exist positive constants Kf (κ,x), K̄f (κ), βf (κ,x), and β̄f (κ) satisfying:

(8a) Pointwise error bound: P
{
‖f∗(x)− f̂n(x)‖2 >κ2

}
≤Kf (κ,x) exp (−nβf (κ,x)) for a.e. x∈X ,

(8b) Mean-squared estimation error bound: P
{ 1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖2 >κ2
}
≤ K̄f (κ) exp

(
−nβ̄f (κ)

)
.

In Appendix EC.3, we verify that this assumption holds for OLS regression and the Lasso with

constants βf (κ,x) and β̄f (κ) scaling as O(κ2) under suitable assumptions on the errors ε. Note that
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Assumption 8 strengthens Assumption 6 by imposing restrictions on the tails of the estimators.

Using the union bound, Assumption 8 implies along with Lemma 1 that for a.e. x∈X :

P
{ 1

n

n∑
i=1

‖ε̃in(x)‖2 >κ2
}
≤Kf

(κ
2
, x
)

exp
(
−nβf

(κ
2
, x
))

+ K̄f

(κ
2

)
exp

(
−nβ̄f

(κ
2

))
.

We also need the following strengthening of Assumption 2 for our finite sample results (see

Appendix EC.2 for conditions under which it holds).

Assumption 2′. There exists a function δ :X →R+ such that for a.e. x ∈ X , the regression step

and the data Dn satisfy ‖ε̃in(x)‖ ≤ δ(x), ∀n ∈ N and i ∈ [n]. Furthermore, Assumption (2b) holds

with Lipschitz constant satisfying sup
z∈Z,ε∈Ξ

Lδ(x) (z, f∗(x) + ε)<+∞, for a.e. x∈X .

The next result provides conditions under which the maximum deviation of the ER-SAA objec-

tive from the full-information SAA objective on the feasible set Z satisfies a qualitatively similar

large deviations bound as that in Assumption 7.

Lemma 2. Suppose Assumption 8 and either Assumption 1 or Assumption 2′ hold. Then for any

constant κ> 0 and a.e. x∈X , there exist positive constants K̄(κ,x) and β̄(κ,x) satisfying

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g∗n(z;x)
∣∣>κ}≤ K̄(κ,x) exp

(
−nβ̄(κ,x)

)
.

We are now ready to present the main result of this section. It extends finite sample results that

are known for traditional SAA estimators, see, e.g., Theorem 2.3 of Homem-de-Mello (2008) and

Section 5.3 of Shapiro et al. (2009), to the ER-SAA setting.

Theorem 3. Suppose Assumptions 7 and 8 and either Assumption 1 or Assumption 2′ hold. Then,

for a.e. x∈X , given η > 0, there exist constants Q(η,x)> 0 and γ(η,x)> 0 such that

P
{

dist(ẑERn (x), S∗(x))≥ η
}
≤Q(η,x) exp(−nγ(η,x)), ∀n∈N.

We now specialize the results in this section to the setting where the ER-SAA formulation is

applied to two-stage stochastic LP with OLS, Lasso, or kNN regression as the prediction setup.

We make stronger than necessary assumptions on the regression setups to improve readability.

Proposition 2. Consider Example 1. Suppose the set Z is compact with diameter D and for a.e.

x∈X , the random variable c(z, f∗(x) + ε)−E [c(z, f∗(x) + ε)] is sub-Gaussian with variance proxy

σ2
c (x) for each z ∈ Z. Let εi, i ∈ [n], be i.i.d. sub-Gaussian random vectors with variance proxy

σ2, δ ∈ (0,1) be the desired reliability level, and Sκ(x) := {z ∈Z : g(z;x)≤ v∗(x) +κ} denote the set

of κ-optimal solutions to the true problem (1).
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1. Suppose the regression function f∗ is linear, the regression step (3) is OLS regression, the

covariance matrix ΣX of the covariates is positive definite, and the random vector Σ
− 1

2
X X is

sub-Gaussian. Then, for sample size n satisfying

n≥ O(1)σ2
c (x)

κ2

[
dz log

(
O(1)D

κ

)
+ log

(
O(1)

δ

)]
+
O(1)σ2dy

κ2

[
log

(
O(1)

δ

)
+ dx

]
,

we have P
{
ŜERn (x)⊆ Sκ(x)

}
≥ 1− δ.

2. Suppose the regression function f∗ is linear with ‖θ∗[j]‖0 ≤ s, ∀j ∈ [dy], the regression step (3)

is Lasso regression, the support X of the covariates X is compact, E [|Xj|2]> 0, ∀j ∈ [dx], and

the matrix E [XXT] − τdiag(E [XXT]) is positive semidefinite for some constant τ ∈ (0,1].

Then, for sample size n satisfying

n≥ O(1)σ2
c (x)

κ2

[
dz log

(
O(1)D

κ

)
+ log

(
O(1)

δ

)]
+
O(1)σ2sdy

κ2

[
log

(
O(1)

δ

)
+ log(dx)

]
,

we have P
{
ŜERn (x)⊆ Sκ(x)

}
≥ 1− δ.

3. Suppose the regression function f∗ is Lipschitz continuous, the regression step (3) is kNN

regression with parameter k = dO(1)nγe for some constant γ ∈ (0,1), the support X of the

covariates X is compact, and there exists a constant τ > 0 such that P{X ∈Bκ(x)} ≥ τκdx,

∀x∈X and κ> 0. Then, for sample size n≥O(1)

(
O(1)

κ

) dx
1−γ

,
nγ

log(n)
≥ O(1)dxdyσ

2

κ2
, and

n≥ O(1)σ2
c (x)

κ2

[
dz log

(
O(1)D

κ

)
+ log

(
O(1)

δ

)]
+

(
O(1)σ2dy

κ2

) 1
γ
[
dx log

(
O(1)

dx

)
+ log

(
O(1)

δ

)] 1
γ

+(
O(1)dy
κ2

)dx [dx
2

log

(
O(1)dxdy

κ2

)
+ log

(
O(1)

δ

)]
,

we have P
{
ŜERn (x)⊆ Sκ(x)

}
≥ 1− δ.

The proof of Proposition 2 proceeds by estimating the sample size required for the full-

information SAA problem (2) to be ‘close to’ the true problem (1) and for the ER-SAA problem (4)

to be ‘close to’ the full-information SAA problem (2). The sample size estimates given in Proposi-

tion 2 involve the sum of these two contributions, the first of which is the classical estimate

n≥ O(1)σ2
c (x)

κ2

[
dz log

(
O(1)D

κ

)
+ log

(
O(1)

δ

)]
for solutions of the full-information SAA problem (2) to possess a similar guarantee (cf. Section 5.3

of Shapiro et al. 2009). Our learning of the regression function f∗ introduces additional terms in the

estimate that depend on the dimensions dy and dx of the random vector Y and the covariates X.

Proposition 2 also illustrates the tradeoff between using parametric and nonparametric regression

approaches within the ER-SAA framework. Assuming that the regression function f∗ satisfies the
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necessary structural properties, using OLS regression or the Lasso for the regression step (3) can

yield sample size estimates that depend modestly on the accuracy κ and the dimensions dx and

dy compared to kNN regression. On the other hand, unlike OLS and Lasso regression, the sample

size estimates for kNN regression are valid under mild assumptions on the regression function f∗.

Nevertheless, we empirically demonstrate in Section 4 that it may be beneficial to use a structured

but misspecified prediction model when we do not have an abundance of data. Note that the OLS

estimate includes a term that depends linearly on the dimension dx of the covariates X, whereas

the corresponding term in the Lasso estimate only depends logarithmically on dx.

3.4. Outline of analysis for the Jackknife-based estimators

The results thus far carry over to the J-SAA and J+-SAA estimators if the assumptions that ensure

1
n

∑n

i=1‖ε̃in(x)‖2 p−→ 0 at a certain rate are adapted to ensure that the mean-squared deviation terms

1
n

∑n

i=1‖ε̃i,Jn (x)‖2 and 1
n

∑n

i=1‖ε̃i,J+
n (x)‖2 converge to zero in probability at a certain rate, where

ε̃i,Jn (x) :=
(
f̂n(x) + ε̂in,J

)
−
(
f∗(x) + εi

)
=
[
f̂n(x)− f∗(x)

]
+
[
f∗(xi)− f̂−i(xi)

]
, ∀i∈ [n],

ε̃i,J+
n (x) :=

(
f̂−i(x) + ε̂in,J

)
−
(
f∗(x) + εi

)
=
[
f̂−i(x)− f∗(x)

]
+
[
f∗(xi)− f̂−i(xi)

]
, ∀i∈ [n].

Similar to the deviation terms ε̃in(x) introduced at the start of Section 3, the deviation terms ε̃i,Jn (x)

and ε̃i,J+
n (x) can be interpreted as the sum of a prediction error at the point x ∈ X and the

leave-one-out estimation error at the training point xi ∈X . Because (cf. Lemma 1)

1

n

n∑
i=1

‖ε̃i,Jn (x)‖2 ≤ 2‖f∗(x)− f̂n(x)‖2 +
2

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2, and

1

n

n∑
i=1

‖ε̃i,J+
n (x)‖2 ≤ 2

n

n∑
i=1

‖f∗(x)− f̂−i(x)‖2 +
2

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2,

it suffices for the assumptions on the quantities ‖f∗(x)− f̂n(x)‖2 and 1
n

∑n

i=1‖f∗(xi)− f̂n(xi)‖2

in the previous sections to be replaced with assumptions on the terms ‖f∗(x) − f̂n(x)‖2

and 1
n

∑n

i=1‖f∗(xi) − f̂−i(x
i)‖2 for the J-SAA approach, and with assumptions on the terms

1
n

∑n

i=1‖f∗(x)− f̂−i(x)‖2 and 1
n

∑n

i=1‖f∗(xi)− f̂−i(xi)‖2 for the J+-SAA approach. Since the formal

statements of the assumptions and results for the J-SAA and J+-SAA estimators closely mirror

those for the ER-SAA given in Sections 3.1, 3.2, and 3.3, we present these details in Appendix EC.1.

4. Computational experiments

We consider instances of the following resource allocation model adapted from Luedtke (2014):

min
z∈R|I|+

cT
z z+E [Q(z,Y )] ,
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where the second-stage function is defined as

Q(z, y) := min
v∈R|I|×|J |+ ,w∈R|J |+

{
qT
ww :

∑
j∈J

vij ≤ ρizi, ∀i∈ I,
∑
i∈I

µijvij +wj ≥ yj, ∀j ∈J
}
.

The first-stage variables zi denote the order quantities of resources i ∈ I, and the second-stage

variables vij and wj denote the amount of resource i∈ I allocated to customer type j ∈J and the

unmet demand of customer type j, respectively. We consider instances with |I|= 20 and |J |= 30.

The yield and service rate parameters ρ and µ and the cost coefficients cz and qw are assumed to

be deterministic. Parameters cz, ρ, and µ are set using the procedure described in Luedtke (2014),

and the coefficients qw are determined by qw := τ‖cz‖∞, where each component of the vector τ is

drawn independently from a lognormal LN (0.5,0.05) distribution.

The demands yj, j ∈J , of the customer types are considered to be stochastic. We assume that

some of the variability in the demands can be explained with knowledge of covariates Xl, l ∈ L,

where |L|= dx. We assume that the demands Y are related to the covariates through

Yj =ϕ∗j +
∑
l∈L∗

ζ∗jl(Xl)
p + εj, ∀j ∈J ,

where p ∈ {0.5,1,2} is a fixed parameter that determines the model class, εj ∼ N
(
0, σ2

j

)
is an

additive error, ϕ∗, ζ∗ and σj are model parameters, and L∗ ⊆ L contains the indices of a subset

of covariates with predictive power (note that L∗ does not depend on j ∈ J ). Throughout, we

assume that |L∗|= 3, i.e., the demands truly depend only on three covariates. We simulate i.i.d.

data Dn with ϕ∗ and ζ∗ randomly generated, σj = σ = 5, ∀j ∈ J , unless otherwise specified, and

draw covariate samples {xi}ni=1 from a multivariate folded normal distribution (see Appendix EC.4

in the electronic companion for details).

Given data Dn on the demands and covariates, we estimate the coefficients of the linear model

Yj =ϕj +
∑
l∈L

ζjlXl + ηj, ∀j ∈J ,

where ηj are zero-mean errors, using OLS or Lasso regression and use this prediction model within

the ER-SAA, J-SAA, and J+-SAA frameworks. We use this linear prediction model even when the

degree p 6= 1, in which case the prediction model is misspecified.

We compare our data-driven SAA estimators with the kNN-based reweighted SAA (kNN-SAA)

approach of Bertsimas and Kallus (2019) on a few test instances by varying the dimensions of the

covariates dx, the sample size n, the degree p, and the standard deviation σ of the errors ε. While

our case studies illustrate the potential advantages of employing parametric regression models (such

as OLS and the Lasso) within our data-driven formulations, we do not claim that this advantage

holds for arbitrary model instances. We choose the kNN-SAA approach to compare against because
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it is easy to implement and tune this approach, and the empirical results of Bertsimas and Kallus

(2019) and Bertsimas and McCord (2019) show that this approach is one of the better performing

reweighted SAA approaches. The ‘parameter k’ in kNN-SAA is chosen by determining the value

of k in [bn0.1c, dn0.9e] that yields the smallest test error using 5-fold cross-validation when kNN is

used to predict Y from X.

Solutions obtained from the different approaches are compared by estimating a normalized ver-

sion of the upper bound of a 99% confidence interval (UCB) on their optimality gaps using the

multiple replication procedure of Mak et al. (1999) (see Appendix EC.4 for details). Because the

data-driven solutions depend on the realization of samples Dn, we perform 100 replications per test

instance and report our results in the form of box plots of these UCBs (the boxes denote the 25th,

50th, and 75th percentiles of the 99% UCBs, and the whiskers denote the 2nd and 98th percentiles

of the 99% UCBs over the 100 replicates).

Source code and data for the test instances are available at https://github.com/rohitkannan/

DD-SAA. Our codes are written in Julia 0.6.4 (Bezanson et al. 2017), use Gurobi 8.1.0 to solve LPs

through the JuMP 0.18.5 interface (Dunning et al. 2017), and use glmnet 0.3.0 (Friedman et al.

2010) for Lasso regression. All computational tests were conducted through the UW-Madison high

throughput computing software HTCondor (http://chtc.cs.wisc.edu/).

Effect of varying covariate dimension. Figure 1 compares the performance of the kNN-SAA and

ER-SAA+OLS approaches by varying the model degree p, the covariate dimension among dx ∈

{3,10,100}, and the sample size among n∈ {1.5(dx+1),2(dx+1),5(dx+1),20(dx+1),100(dx+1)}.

Note that OLS regression estimates dx + 1 parameters for each j ∈J . When the prediction model

is correctly specified (i.e., p= 1), the ER-SAA+OLS approach unsurprisingly dominates the kNN-

SAA approach. When p 6= 1, as anticipated, the ER-SAA+OLS approach does not yield a consistent

estimator, whereas the kNN-SAA approach yields consistent estimators, albeit with a slow rate

of convergence (cf. Proposition 2). However, the ER-SAA approach consistently outperforms the

kNN-SAA approach when p = 0.5 even for the largest sample size of n = 100(dx + 1). When the

degree p= 2, the kNN-SAA approach fares better than the ER-SAA approach only for a sample

size of n≥ 80 when the covariate dimension is small (dx = 3), and loses this advantage in the larger

covariate dimensions. While we do not show results, we mention that the N-SAA estimator is not

asymptotically optimal for all three model instances with the median values of the 99% UCBs of

its percentage optimality gaps being about 10%, 5%, and 24% for the p = 1, p = 0.5, and p = 2

instances, respectively, for large values of n. This indicates that using covariate information can be

advantageous in these instances.
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Figure 1 Comparison of the kNN-SAA (k) and ER-SAA+OLS (E) approaches. Top row: p = 1. Middle row:

p= 0.5. Bottom row: p= 2. Left column: dx = 3. Middle column: dx = 10. Right column: dx = 100.

Impact of the Jackknife-based formulations. Figure 2 compares the performance of the ER-SAA

and J-SAA approaches with OLS regression by varying the model degree p, the covariate dimension

among dx ∈ {10,100}, and the sample size among n ∈ {1.2(dx + 1),1.3(dx + 1),1.5(dx + 1),2(dx +

1),3(dx + 1)}. We employ smaller sample sizes in these experiments to see if the Jackknife-based

SAAs perform better in the limited data regime. We observe that the solutions obtained from the

J-SAA formulation typically have smaller 75th and 98th percentiles of the 99% UCBs than those

from the ER-SAA formulation, particularly when the sample size n is small. Performance gains are

more pronounced for larger sample sizes when the covariate dimension is larger (dx = 100), possibly

because the OLS estimators overfit more. Note that, as expected, the J-SAA results converge to

the ER-SAA results when the sample size increases. We do not plot the results for the J+-SAA

formulation because they are similar to those of the J-SAA formulation.
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Figure 2 Comparison of the ER-SAA (E) and J-SAA (J) approaches with OLS regression. Top row: p= 1. Middle

row: p= 0.5. Bottom row: p= 2. Left column: dx = 10. Right column: dx = 100.

Impact of the prediction setup. Figure 3 compares the performance of the ER-SAA+OLS and

ER-SAA+Lasso approaches by varying the model degree p, the covariate dimension among dx ∈

{10,100}, and the sample size among n∈ {1.2(dx + 1),1.3(dx + 1),1.5(dx + 1),2(dx + 1),3(dx + 1)}.

We observe that the ER-SAA+Lasso formulation yields better estimators than the ER-SAA+OLS

formulation when the sample size n is small relative to the covariate dimension dx. This effect

is accentuated when the covariate dimension is larger (dx = 100), in which case the OLS-based

estimators overfit more and there is increased benefit in using the Lasso to fit a sparser model. The

advantage of the Lasso-based estimators also shrinks as the sample size increases.

Impact of the error variance. Figure 4 compares the performance of the kNN-SAA and ER-

SAA+OLS approaches by varying the standard deviation of the errors ε among σ ∈ {5,10,20}

(note that the case studies thus far used σ= 5) and the sample size among n∈ {1.5(dx + 1),2(dx +
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Figure 3 Comparison of the ER-SAA+OLS (E) and ER-SAA+Lasso (L) approaches. Top row: p= 1. Middle row:

p= 0.5. Bottom row: p= 2. Left column: dx = 10. Right column: dx = 100.

1),5(dx + 1),20(dx + 1),100(dx + 1)} for dx = 10 and p = 1. We observe that the ER-SAA+OLS

formulation needs a larger sample size to yield a similar certificate of optimality as the standard

deviation σ increases. On the other hand, the performance of the kNN-SAA formulation appears

to be unaffected (and even slightly improve!) with increasing error variance. A possible reason for

this behavior is that the dominant term in the sample size estimate provided by Proposition 2 for

kNN regression does not involve σ.

5. Conclusion and future work

We propose three data-driven SAA frameworks for approximating the solution to two-stage stochas-

tic programs when the DM has access to a finite number of samples of random variables and

concurrently observed covariates. These formulations fit a model to predict the random variables

given covariate values, and use the prediction model and its (out-of-sample) residuals on the given
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Figure 4 Effect of increasing σ on the ER-SAA+OLS (E) and kNN-SAA (k) approaches when dx = 10 and p= 1.

Left plot: σ= 5. Middle plot: σ= 10. Right plot: σ= 20.

data to construct scenarios for the original stochastic program at a new covariate realization. We

provide conditions on the prediction and optimization frameworks and the data generation pro-

cess under which these data-driven estimators are asymptotically optimal, possess a certain rate

of convergence, and possess finite sample guarantees. In particular, we show that our assumptions

hold for two-stage stochastic LP in conjunction with popular regression setups such as OLS, Lasso,

kNN, and RF regression under various assumptions on the data generation process. Numerical

experiments demonstrate the benefits of our data-driven SAA frameworks, in particular, those of

our new data-driven formulations in the limited data regime.

Verifying that the assumptions on the prediction setup hold for other frameworks of interest is an

important task to be undertaken by the DM. Ongoing work includes analysis of a distributionally

robust optimization extension of the ER-SAA problem (4) that possesses practical finite sample

guarantees (cf. Bertsimas et al. 2019, Dou and Anitescu 2019), and analysis of the extension of

the ER-SAA approach to the multi-stage stochastic programming setting (cf. Ban et al. 2018,

Bertsimas and McCord 2019). Designing asymptotically optimal estimators for problems with

stochastic constraints (Homem-de-Mello and Bayraksan 2015) and for the case when decisions

affect the realizations of the random variables (Bertsimas and Kallus 2019) are interesting avenues

for future work.

Appendix A: Omitted proofs

A.1. Proof of Theorem 1

Before we prove Theorem 1, we present the following lemma that is needed in its proof.

Lemma 3. Let W ⊂Rdw be a nonempty and compact set and h :W →R be a lower semicontinuous

function. Consider minimizing h(w) over W . Let W ∗ denote the set of optimal solutions to this

problem, i.e., W ∗ := arg min
w∈W

h(w). Suppose there exists δ > 0 and w̄ ∈W such that dist(w̄,W ∗)≥ δ.
Then, there exists κ> 0 such that h(w̄)≥ min

w∈W
h(w) +κ.
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Proof of Lemma 3. Let Wδ := {w ∈W : dist(w,W ∗)≥ δ}, and note that w̄ ∈Wδ. Since h is

lower semicontinuous and Wδ is nonempty and compact, inf
w∈Wδ

h(w) is attained. Furthermore, we

readily have min
w∈Wδ

h(w)> min
w∈W

h(w). Setting κ= min
w∈Wδ

h(w)−min
w∈W

h(w) yields the desired result. �

Proof of Theorem 1. Let z∗(x) ∈ S∗(x) and ẑERn (x) ∈ ŜERn (x). Consider any constant δ > 0.

From Proposition 1, we have for a.e. x∈X :

P
{∣∣ĝERn (z∗(x);x)− v∗(x)

∣∣> δ}→ 0 =⇒ P
{
v̂ERn (x)> v∗(x) + δ

}
→ 0 and

P
{∣∣v̂ERn (x)− g(ẑERn (x);x)

∣∣> δ}→ 0 =⇒ P
{
v∗(x)> v̂ERn (x) + δ

}
→ 0.

These inequalities yield P{|v̂ERn (x)− v∗(x)|> δ}→ 0 for a.e. x ∈X , which implies v̂ERn (x)
p−→ v∗(x)

for a.e. x∈X .

Suppose for contradiction that D
(
ŜERn (x), S∗(x)

)
6 p−→ 0, ∀x ∈ X̄ , where X̄ ⊆ X with PX(X̄ )> 0.

This implies for any x̄ ∈ X̄ , there exist constants δ > 0 and β > 0 and a subsequence {nq} of N

such that P
{
D
(
ŜERnq (x̄), S∗(x̄)

)
≥ δ
}
≥ β, ∀q ∈N. Lemma 3 then implies that for a.e. x̄∈ X̄ , there

exists κ(x̄)> 0 such that

P
{

sup
z∈ŜERnq (x̄)

g(z; x̄)> v∗(x̄) +κ(x̄)
}
≥ β, ∀q ∈N. (8)

From Proposition 1, we have for a.e. x̄∈ X̄ :

P
{

sup
z∈ŜERn (x̄)

∣∣ĝERn (z; x̄)− g(z; x̄)
∣∣≤ 0.5κ(x̄)

}
→ 1 =⇒ P

{
sup

z∈ŜERn (x̄)

g(z; x̄)≤ v̂ERn (x̄) + 0.5κ(x̄)
}
→ 1,

P
{

sup
z∈S∗(x̄)

∣∣ĝERn (z, x̄)− g(z, x̄)
∣∣≤ 0.5κ(x̄)

}
→ 1 =⇒ P

{
sup

z∈S∗(x̄)

ĝERn (z; x̄)≤ v∗(x̄) + 0.5κ(x̄)
}
→ 1.

Since v̂ERn (x̄)≤ sup
z∈S∗(x̄)

ĝERn (z; x̄) by definition, the above inequalities in turn imply

P
{

sup
z∈ŜERn (x̄)

g(z; x̄)≤ v∗(x̄) +κ(x̄)
}
→ 1,

which contradicts the inequality (8). The above arguments also readily imply that the ER-SAA

estimators are asymptotically optimal, i.e., sup
z∈ŜERn (x)

g(z;x)
p−→ v∗(x) for a.e. x∈X . �

A.2. Proof of Theorem 2

Proof of Theorem 2. Let {βn} ↓ 0 be any positive sequence such that {βn
√
n} → ∞ and

βn
√
n = o

(
n
α
2

)
. We consider the sequence {βn} to force the following two sequences of random

variables to converge to zero in probability. Assumption (5a), the continuity of g(·;x), and the

compactness of Z imply that the functions ĝERn (·;x), g∗n(·;x), and g(·;x) are all elements of L∞(Z)
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(in fact, they are all elements of C(Z), the space of continuous functions on Z equipped with the

sup-norm). Assumption (5b) along with Slutzky’s lemma then yields

βn
√
n (g∗n(·;x)− g(·;x))

d−→ 0, for a.e. x∈X .

Recall that the above notation means that the sequence of functions converges in distribution to

the zero element of L∞(Z) with respect to the sup-norm. From the proof of Proposition 1 and using

Assumption 6, we have that ĝERn (·;x)− g∗n(·;x) =Op
(
n−

α
2

)
when viewed as a random element of

L∞(Z). Because by construction n−α/2βn
√
n= op(1) (for deterministic sequences op reduces to o),

n
α
2 (ĝERn (·;x)− g∗n(·;x)) =Op(1), and by the fact that op(1)Op(1) = op(1), we have

βn
√
n
(
ĝERn (·;x)− g∗n(·;x)

)
= op(1), for a.e. x∈X .

Using op(1) + op(1) = op(1) to combine the above two results, we have

βn
√
n
(
ĝERn (·;x)− g(·;x)

)
= op(1), for a.e. x∈X .

This implies that the sequence βn
√
n (ĝERn (·;x)− g(·;x)) of random functions in C(Z) converges in

distribution to the zero element of C(Z). Therefore, by mirroring the arguments in the proof of

Theorem 5.7 of Shapiro et al. (2009) (that uses the Delta theorem, see Theorem 7.59 of Shapiro

et al. 2009), we then obtain

v̂ERn (x) = v∗(x) + op(β
−1
n n−0.5), for a.e. x∈X ,

which is almost what we set out to establish since βn
√
n= o

(
n
α
2

)
.

We now show that the stated results hold because {βn} was an arbitrary sequence converging

to zero satisfying {βn
√
n}→∞ and βn

√
n= o

(
n
α
2

)
. Let βn = n

α−1
2 (max{1, log logn})−1, and note

that such a sequence {βn} satisfies the aforementioned conditions (note that the choice of log logn

is arbitrary). This yields v̂ERn (x) = v∗(x) + op
(
n−

α
2 log logn

)
= v∗(x) + õp

(
n−

α
2

)
for a.e. x∈X . �

A.3. Proofs of Lemma 2, Theorem 3, and Proposition 2

Proof of Lemma 2. Suppose Assumption 1 holds. From the proof of Proposition 1, we have:

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g∗n(z;x)
∣∣>κ}≤P

{(
sup
z∈Z

L(z)

)√√√√ 1

n

n∑
i=1

‖ε̃in(x)‖2 >κ

}

≤P

{√√√√ 1

n

n∑
i=1

‖ε̃in(x)‖2 > κ

BL(x)

}
,
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where BL(x) := sup
z∈Z

L(z). Next, suppose instead that Assumption 2′ holds. From the proof of

Proposition 1, we have:

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g∗n(z;x)
∣∣>κ}≤P

{
sup
z∈Z

√√√√ 1

n

n∑
i=1

L2
δ(x)(z, f

∗(x) + εi)

√√√√ 1

n

n∑
i=1

‖ε̃in(x)‖2 >κ

}

≤P

{√√√√ 1

n

n∑
i=1

‖ε̃in(x)‖2 > κ

BL(x)

}
,

where BL(x) := sup
(z,ε)∈Z×Ξ

Lδ(x)(z, f
∗(x) + ε) is finite by virtue of Assumption 2′. In both cases, the

inequality immediately following Assumption 8 yields the desired conclusion via

P

{√√√√ 1

n

n∑
i=1

‖ε̃in(x)‖2 > κ

BL(x)

}
≤Kf

(
κ

2BL(x)
, x

)
exp

(
−nβf

(
κ

2BL(x)
, x

))
+

K̄f

(
κ

2BL(x)

)
exp

(
−nβ̄f

(
κ

2BL(x)

))
. �

Proof of Theorem 3. Note that for any κ> 0:

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g(z;x)
∣∣>κ}≤P

{
sup
z∈Z

∣∣ĝERn (z;x)− g∗n(z;x)
∣∣> κ

2

}
+P
{

sup
z∈Z
|g∗n(z;x)− g(z;x)|> κ

2

}
.

Bounding the two terms on the r.h.s. of the above inequality using Assumption 7 and Lemma 2

yields for a.e. x∈X :

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g(z;x)
∣∣>κ}≤ K̃(κ,x) exp

(
−nβ̃(κ,x)

)
, (9)

where K̃(κ,x) := 2max
{
K(0.5κ,x), K̄(0.5κ,x)

}
and β̃(κ,x) := min

{
β(0.5κ,x), β̄(0.5κ,x)

}
. From

inequality (9), we have for a.e. x∈X and any κ(x)> 0, z∗(x)∈ S∗(x):

P
{
g(ẑERn (x);x)≤ v̂ERn (x) + 0.5κ(x)

}
≥ 1− K̃(0.5κ(x), x) exp

(
−nβ̃(0.5κ(x), x)

)
,

P
{
ĝERn (z∗(x);x)≤ v∗(x) + 0.5κ(x)

}
≥ 1− K̃(0.5κ(x), x) exp

(
−nβ̃(0.5κ(x), x)

)
.

Since v̂ERn (x)≤ ĝERn (z∗(x);x) by definition, this implies for a.e. x∈X and any κ(x)> 0:

P
{
g(ẑERn (x);x)≤ v∗(x) +κ(x)

}
≥ 1− 2K̃(0.5κ(x), x) exp

(
−nβ̃(0.5κ(x), x)

)
.

Suppose dist(ẑERn (x), S∗(x)) ≥ η for some x ∈ X and some sample path. Since g(·;x) is lower

semicontinuous on the compact set Z for a.e. x∈X , Lemma 3 implies that there exists κ(η,x)> 0

such that g(ẑERn (x);x)> v∗(x) +κ(η,x) on that path (except for some paths of measure zero). We

now provide a bound on the probability of this event. By the above arguments, we have for a.e.

x∈X :

P
{

dist(ẑERn (x), S∗(x))≥ η
}
≤ P

{
g(ẑERn (x);x)> v∗(x) +κ(η,x)

}
≤ 2K̃(0.5κ(η,x), x) exp

(
−nβ̃(0.5κ(η,x), x)

)
. �
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Proof of Proposition 2. We show that for a.e. x∈X , there exist positive constants K̃(κ,x) and

β̃(κ,x) s.t.

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g(z;x)
∣∣>κ}≤ K̃(κ,x) exp

(
−nβ̃(κ,x)

)
. (10)

Inequality (10) then implies

P
{

sup
z∈ŜERn (x)

∣∣ĝERn (z;x)− g(z;x)
∣∣≤ 0.5κ

}
≥ 1− K̃(0.5κ,x) exp

(
−nβ̃(0.5κ,x)

)
=⇒ P

{
sup

z∈ŜERn (x)

g(z;x)≤ v̂ERn (x) + 0.5κ
}
≥ 1− K̃(0.5κ,x) exp

(
−nβ̃(0.5κ,x)

)
,

and P
{

sup
z∈S∗(x)

∣∣ĝERn (z;x)− g(z;x)
∣∣≤ 0.5κ

}
≥ 1− K̃(0.5κ,x) exp

(
−nβ̃(0.5κ,x)

)
=⇒ P

{
sup

z∈S∗(x)

ĝERn (z;x)≤ v∗(x) + 0.5κ
}
≥ 1− K̃(0.5κ,x) exp

(
−nβ̃(0.5κ,x)

)
.

Since v̂ERn (x)≤ sup
z∈S∗(x)

ĝERn (z;x) by the definition of v̂ERn (x), the above two inequalities imply

P
{

sup
z∈ŜERn (x)

g(z;x)≤ v∗(x) +κ
}
≥ 1− 2K̃(0.5κ,x) exp

(
−nβ̃(0.5κ,x)

)
,

which in turn implies that

P
{
ŜERn (x)⊆ Sκ(x)

}
≥ 1− 2K̃(0.5κ,x) exp

(
−nβ̃(0.5κ,x)

)
.

We now state results that can be used to bound the constants K̃(κ,x) and β̃(κ,x) in inequal-

ity (10); we ignore their dependence on x to keep the exposition simple. Theorems 7.66 and 7.67

of Shapiro et al. (2009) imply for our setting of two-stage stochastic LP the bound

P
{

sup
z∈Z
|g∗n(z;x)− g(z;x)|>κ

}
≤O(1)

(
O(1)D

κ

)dz
exp

(
− nκ2

O(1)σ2
c (x)

)
(11)

for a.e. x ∈ X . The following large deviation inequalities for our three different regression setups

(see Appendix EC.3) can be used to specialize the bound afforded by Lemma 2:

1. OLS regression: P
{ 1

n

n∑
i=1

‖ε̃in(x)‖2 > κ2
}
≤ exp(dx) exp

(
− nκ2

O(1)σ2dy

)
, which follows from

Remark 12 of Hsu et al. (2012), Theorem 2.2 and Remark 2.3 of Rigollet and Hütter (2017).

2. Lasso regression: P
{ 1

n

n∑
i=1

‖ε̃in(x)‖2 > κ2
}
≤ 2dx exp

(
− nκ2

O(1)σ2sdy

)
, which follows from The-

orem 2.1 and Corollary 1 of Bunea et al. (2007).

3. kNN regression: Whenever n≥O(1)

(
O(1)

κ

) dx
1−γ

and
nγ

log(n)
≥ O(1)dxdyσ

2

κ2
, we have

P

{
1

n

n∑
i=1

‖ε̃in(x)‖2 >κ2dy

}
≤
(
O(1)

√
dx

κ

)dx
exp

(
−O(1)n(O(1)κ)2dx

)
+O(1)n2dx

(
O(1)

dx

)dx
exp

(
− nγκ2

O(1)σ2

)
from Lemma 10 of Bertsimas and McCord (2019).
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Suppose the regression step (3) is Lasso regression. We have from Lemma 2 that

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g∗n(z;x)
∣∣>κ}≤O(1)dx exp

(
− nκ2

O(1)σ2sdy

)
.

Along with the uniform exponential bound inequality (11), this yields for a.e. x∈X :

P
{

sup
z∈Z

∣∣ĝERn (z;x)− g(z;x)
∣∣>κ}≤O(1)

(
O(1)D

κ

)dz
exp

(
− nκ2

O(1)σ2
c (x)

)
+O(1)dx exp

(
− nκ2

O(1)σ2sdy

)
.

Requiring each term in the r.h.s. of the above inequality to be ≤ δ
2

and using the union bound

yields the stated conservative sample size results. Sample complexities for OLS and kNN regression

can be similarly derived. �
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Electronic companion

We begin with the analysis of the Jackknife-based variants in Section EC.1. Then, in Sec-

tion EC.2, we present a class of two-stage stochastic programs that satisfy our assumptions. Sec-

tion EC.3 lists several prediction setups (including M-estimators, OLS, Lasso, kNN, CART, and

RF regression) that satisfy the assumptions in our analysis. Finally, we end with Section EC.4 by

providing omitted details for the computational experiments.

Appendix EC.1: Analysis for the Jackknife and Jackknife+ estimators

In this section, we analyze the consistency, rate of convergence, and finite sample guarantees of the

J-SAA and J+-SAA estimators obtained by solving problems (6) and (7), respectively, under certain

assumptions on the true problem (1) and the prediction step (3). We omit proofs because they are

similar to the proofs of results in Section 3. In place of the sequence of deviation terms {ε̃in(x)}

considered in Section 3, we consider the following deviation sequences {ε̃i,Jn (x)} and {ε̃i,J+
n (x)}:

ε̃i,Jn (x) :=
(
f̂n(x) + ε̂in,J

)
−
(
f∗(x) + εi

)
=
[
f̂n(x)− f∗(x)

]
+
[
f∗(xi)− f̂−i(xi)

]
, ∀i∈ [n],

ε̃i,J+
n (x) :=

(
f̂−i(x) + ε̂in,J

)
−
(
f∗(x) + εi

)
=
[
f̂−i(x)− f∗(x)

]
+
[
f∗(xi)− f̂−i(xi)

]
, ∀i∈ [n].

We let ẑJn(x) and ẑJ+
n (x) denote an optimal solution to problem (6) and (7), respectively, and ŜJn(x)

and ŜJ+
n (x) denote the corresponding sets of optimal solutions. We assume throughout that the

sets ŜJn(x) and ŜJ+
n (x) are nonempty for a.e. x∈X .

EC.1.1. Consistency and asymptotic optimality

We present conditions under which the optimal objective value of and optimal solutions to the

J-SAA and J+-SAA problems (6) and (7) asymptotically converge to those of the true problem (1).

We begin by adapting Assumption 2 in Section 3.1.

Assumption 2J. Assumption 2 holds with the sequence {ε̃in(x)} substituted by {ε̃i,Jn (x)}.

Assumption 2J+. Assumption 2 holds with the sequence {ε̃in(x)} substituted by {ε̃i,J+
n (x)}.

Part one of Assumptions 2J and 2J+ are satisfied for our running example of OLS regression

if the support X of the covariates X is compact and all of the parameter estimates θ̂n and θ̂−i,

i ∈ [n], a.s. lie within the same compact set for n large enough, where θ̂−i denotes the estimate of

θ∗ obtained using the training data Dn\{(yi, xi)}. Next, we make the following assumptions on the

consistency of the (leave-one-out version of the) regression procedure (3) that adapts Assumption 4

for the J-SAA and J+-SAA approaches.

Assumption 4J. The regression procedure (3) satisfies the following consistency properties:
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(4Ja) Pointwise error consistency: f̂n(x)
p−→ f∗(x) for a.e. x∈X ,

(4Jb) Mean-squared estimation error consistency:
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2
p−→ 0.

Assumption 4J+. The regression procedure (3) satisfies the following consistency properties:

(4J+a) Pointwise error consistency:
1

n

n∑
i=1

‖f∗(x)− f̂−i(x)‖2 p−→ 0 for a.e. x∈X ,

(4J+b) Mean-squared estimation error consistency:
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2
p−→ 0.

Assumptions (4Jb) and (4J+b) are equivalent to Assumption (4b) when the stability assumption

1
n

∑n

i=1‖f̂n(xi) − f̂−i(xi)‖2
p−→ 0 is made on the regression setup (cf. Section 5 of Barber et al.

2019). Section EC.3 demonstrates that Assumptions 4J and 4J+ hold for OLS, Lasso, kNN, and

RF regression when Dn is i.i.d. The motivation for Assumptions 4J and 4J+ is to establish that

the mean-squared deviation terms 1
n

∑n

i=1‖ε̃i,Jn (x)‖2 and 1
n

∑n

i=1‖ε̃i,J+
n (x)‖2 converge to zero in

probability (cf. Lemma 1).

Lemma EC.1. For any x∈X , we have

1

n

n∑
i=1

‖ε̃i,Jn (x)‖2 ≤ 2‖f∗(x)− f̂n(x)‖2 +
2

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2,

1

n

n∑
i=1

‖ε̃i,J+
n (x)‖2 ≤ 2

n

n∑
i=1

‖f∗(x)− f̂−i(x)‖2 +
2

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2.

We now state conditions under which the sequence of objective functions of problems (6) and (7)

converge uniformly to the objective function of the true problem (1) on the set Z. We group the

results for the J-SAA and J+-SAA problems for brevity (the individual results are apparent).

Proposition EC.1. Suppose Assumptions 3, 4J, and 4J+, and either Assumption 1 or Assump-

tions 2J and 2J+ hold. Then, for a.e. x ∈ X , the sequences of objective functions of J-SAA and

J+-SAA problems (6) and (7) converge uniformly in probability to the objective function of the

true problem (1) on the feasible region Z.

Proposition EC.1 helps us establish conditions under which the optimal objective values and

solutions of the J-SAA and J+-SAA problems (6) and (7) converge to those of the true problem (1).

Theorem EC.1. Suppose Assumptions 3, 4J, and 4J+, and either Assumption 1 or Assump-

tions 2J and 2J+ hold. Then, we have v̂Jn(x)
p−→ v∗(x), v̂J+

n (x)
p−→ v∗(x), D

(
ŜJn(x), S∗(x)

)
p−→ 0,

D
(
ŜJ+
n (x), S∗(x)

)
p−→ 0, sup

z∈ŜJn(x)

g(z;x)
p−→ v∗(x), and sup

z∈ŜJ+
n (x)

g(z;x)
p−→ v∗(x) for a.e. x∈X .
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EC.1.2. Rates of convergence

We derive rates of convergence of the optimal objective value of the sequence of J-SAA and J+-SAA

problems (6) and (7) to the optimal objective value of the true problem (1) in this section. In

order to enable this, we make the following assumptions on the regression procedure (3) that

adapt Assumption 6 to strengthen Assumptions 4J and 4J+. Assumptions 6J and 6J+ ensure that

the deviations of the J-SAA and J+-SAA problems (6) and (7) from the full-information SAA

problem (2) converge at a certain rate.

Assumption 6J. There is a constant 0<α≤ 1 (that is independent of the number of samples n,

but could depend on the dimension dx of the covariates X) such that the regression procedure (3)

satisfies the following asymptotic convergence rate criterion:

(6Ja) Pointwise error rate: ‖f∗(x)− f̂n(x)‖2 =Op (n−α) for a.e. x∈X ,

(6Jb) Mean-squared estimation error rate:
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2 =Op(n
−α).

Assumption 6J+. There is a constant 0<α≤ 1 (that is independent of the number of samples n,

but could depend on the dimension dx of the covariates X) such that the regression procedure (3)

satisfies the following asymptotic convergence rate criterion:

(6J+a) Pointwise error rate:
1

n

n∑
i=1

‖f∗(x)− f̂−i(x)‖2 =Op
(
n−α

)
for a.e. x∈X ,

(6J+b) Mean-squared estimation error rate:
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2 =Op(n
−α).

Appendix EC.3 demonstrates that Assumptions 6J and 6J+ hold with rates similar to those in

Assumption 6 when the data Dn is i.i.d. Along with Lemma EC.1, Assumptions 6J and 6J+ imply

that the mean-squared deviation terms for the J-SAA and J+-SAA approaches can be bounded as

1
n

∑n

i=1‖ε̃i,Jn (x)‖2 =Op(n
−α) and 1

n

∑n

i=1‖ε̃i,J+
n (x)‖2 =Op(n

−α) for a.e. x∈X .

We now establish rates at which the optimal objective value of the J-SAA and J+-SAA problems

converge to the optimal objective value of the true problem (1). We hide the dependence of the

convergence rate on the dimensions dx and dy of the covariates X and random vector Y . The

analysis in the next section can account for how these dimensions affect the rate of convergence.

Theorem EC.2. Suppose Assumptions 5, 6J, and 6J+ hold, the objective function of the true

problem (1) is continuous on Z for a.e. x∈X , and either Assumption 1 or Assumptions 2J and 2J+

hold. Then, for a.e. x∈X , we have v̂Jn(x) = v∗(x) + õp(n
−α2 ) and v̂J+

n (x) = v∗(x) + õp(n
−α2 ).

Proposition EC.1 and Theorem EC.2 imply that the J-SAA and J+-SAA estimators satisfy

|g(ẑJn(x);x)− v∗(x)|= õp(n
−α2 ) and |g(ẑJ+

n (x);x)− v∗(x)|= õp(n
−α2 ) for a.e. x∈X .
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EC.1.3. Finite sample guarantees

We now establish exponential convergence of solutions to the J-SAA and J+-SAA problems to

solutions to the true problem (1) under additional assumptions. We begin by adapting Assump-

tion 8 to assume that the prediction error and mean-squared estimation error of the regression

procedure (3) at the training points satisfy the following large deviation properties.

Assumption 8J. The regression procedure (3) has the following large deviation properties: for any

constant κ> 0, there exist positive constants Kf (κ,x), K̄f (κ), βf (κ,x), and β̄f (κ) satisfying

(8Ja) Pointwise error bound: P
{
‖f∗(x)− f̂n(x)‖2 >κ2

}
≤KJ

f (κ,x) exp
(
−nβJf (κ,x)

)
for a.e. x∈X ,

(8Jb) Mean-squared estimation error bound: P

{
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2 >κ2

}
≤ K̄J

f (κ) exp
(
−nβ̄Jf (κ)

)
.

Assumption 8J+. The regression procedure (3) has the following large deviation properties: for

any constant κ> 0, there exist positive constants Kf (κ,x), K̄f (κ), βf (κ,x), and β̄f (κ) satisfying

(8J+a) Pointwise error bound: P

{
1

n

n∑
i=1

‖f∗(x)− f̂−i(x)‖2 >κ2

}
≤KJ+

f (κ,x) exp
(
−nβJ+

f (κ,x)
)

for a.e. x∈X ,

(8J+b) Mean-squared estimation error bound: P

{
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2 >κ2

}
≤ K̄J+

f (κ) exp
(
−nβ̄J+

f (κ)
)
.

Assumptions 8J and 8J+ strengthen Assumptions 6J and 6J+ by imposing restrictions on the

tails of the regression estimators. Please see the discussion in Appendix EC.3 for when these

strengthened assumptions are satisfied with i.i.d. data Dn. We require the following strengthening

of Assumptions 2J and 2J+ for our finite sample results.

Assumption 2′J. Assumption 2′ holds with the sequence {ε̃in(x)} substituted by {ε̃i,Jn (x)}.

Assumption 2′J+. Assumption 2′ holds with the sequence {ε̃in(x)} substituted by {ε̃i,J+
n (x)}.

The next result presents conditions under which the maximum deviations of the J-SAA and

J+-SAA objectives from the full-information SAA objective satisfy qualitatively similar large devi-

ations bounds as that in Assumption 7.

Lemma EC.2. Suppose Assumptions 8J and 8J+ and either Assumption 1 or Assumptions 2′J

and 2′J+ hold. Then for any constant κ> 0 and a.e. x∈X , there exist positive constants K̄J(κ,x),

K̄J+(κ,x), β̄J(κ,x), and β̄J+(κ,x) satisfying

P
{

sup
z∈Z

∣∣ĝJn(z;x)− g∗n(z;x)
∣∣>κ}≤ K̄J(κ,x) exp

(
−nβ̄J(κ,x)

)
, and

P
{

sup
z∈Z

∣∣ĝJ+
n (z;x)− g∗n(z;x)

∣∣>κ}≤ K̄J+(κ,x) exp
(
−nβ̄J+(κ,x)

)
.

We now establish exponential rates of convergence in the number of samples n of the distances

between solutions to the J-SAA and J+-SAA problems (6) and (7) and the set of optimal solutions

to the true problem (1).
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Theorem EC.3. Suppose Assumptions 7, 8J, and 8J+ and either Assumption 1 or Assump-

tions 2′J and 2′J+ hold. Then, for a.e. x∈X , given η > 0, there exist positive constants QJ(η,x),

QJ+(η,x), γJ(η,x), and γJ+(η,x) such that

P
{

dist(ẑJn(x), S∗(x))≥ η
}
≤QJ(η,x) exp(−nγJ(η,x)), ∀n∈N, and

P
{

dist(ẑJ+
n (x), S∗(x))≥ η

}
≤QJ+(η,x) exp(−nγJ+(η,x)), ∀n∈N.

Appendix EC.2: Application to two-stage stochastic programming problems

We present a class of stochastic programs that satisfy Assumptions 1, 2, 2′, and 5. We first consider a

class of two-stage stochastic programs with continuous recourse decisions that subsumes Example 1,

our running example of two-stage stochastic LP. We then briefly outline the verification of these

assumptions for a broader class of stochastic programs. Throughout this section, we let Ȳ denote

the union of the set Y and the set of all possible scenarios {f̂n(x)+ ε̂in} for the ER-SAA problem (4)

for each x∈X .

Consider first the two-stage stochastic program

min
z∈Z

E [c(z,Y )] := p(z) +E [Q(z,Y )] , (EC.1)

where the second-stage function Q is defined by the optimal value of the following LP:

Q(z, y) := min
v∈Rdv+

{
qTv :Wv= h(y)−T (y, z)

}
.

We make the following assumptions on problem (EC.1).

Assumption EC.1. The set Z is nonempty and compact, the matrix W has full row rank, the set

Λ := {λ : λTW ≤ qT} is nonempty, and the value function Q(z, y)<+∞ for each (z, y)∈Z × Ȳ.

Assumption EC.2. The functions h and T (·, z) are Lipschitz continuous on Ȳ for each z ∈ Z

with Lipschitz constants Lh and LT,y(z), and the functions p and T (y, ·) are Lipschitz continuous

on Z for each y ∈ Ȳ with Lipschitz constants Lp and LT,z(y). Additionally, the Lipschitz constants

for the function T satisfy sup
z∈Z

LT,y(z)<+∞ and sup
y∈Y

LT,z(y)<+∞.

Let vert(Λ) denote the finite set of extreme points of the dual feasible region Λ, and define

V (Y,λ, z) := λT (h(Y )−T (Y, z)) for each Y ∈Y, λ∈ vert(Λ), and z ∈Z.

Assumption EC.3. We have E
[
sup
z∈Z
‖h(Y )−T (Y, z)‖2

]
<+∞. Additionally, the random variable

V (f∗(x) + ε,λ, z) − Eε̄∼Pε [V (f∗(x) + ε̄, λ, z)] is sub-Gaussian with variance proxy σ2
c (x) for each

λ∈ vert(Λ) and z ∈Z and a.e. x∈X .
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Note that the first-stage feasible set Z can include integrality constraints. Our running example

of two-stage stochastic LP fits within the above setup and readily satisfies Assumptions EC.1

and EC.2. It also satisfies Assumption EC.3 when the error ε is sub-Gaussian. Additionally, under

Assumption EC.1, we have by LP duality that for each y ∈ Ȳ:

Q(z, y) = max
λ∈Λ

λT (h(y)−T (y, z)) = max
λ∈vert(Λ)

λT (h(y)−T (y, z)) . (EC.2)

Proposition EC.2. Suppose Assumptions EC.1, EC.2, and EC.3 hold and the data Dn is i.i.d.

Then, problem (EC.1) satisfies Assumptions 1, 3, 5, and 7. Furthermore, the objective function of

the true problem (1) is continuous on Z.

Proof. We have by Assumptions EC.1 and EC.2 that for any y, ȳ ∈ Ȳ and z ∈Z:

|c(z, y)− c(z, ȳ)|=
∣∣∣∣ max
λ∈vert(Λ)

λT (h(y)−T (y, z))− max
λ∈vert(Λ)

λT (h(ȳ)−T (ȳ, z))

∣∣∣∣
≤ max

λ∈vert(Λ)

∣∣λT (h(y)−h(ȳ)) +λT (T (ȳ, z)−T (y, z))
∣∣

≤ max
λ∈vert(Λ)

‖λ‖‖h(y)−h(ȳ)‖+ max
λ∈vert(Λ)

‖λ‖‖T (ȳ, z)−T (y, z)‖

≤ [Lh +LT,y(z)]

(
max

λ∈vert(Λ)
‖λ‖
)
‖y− ȳ‖.

Therefore, Assumption 1 holds since sup
z∈Z

LT,y(z)<+∞ and max
λ∈vert(Λ)

‖λ‖<+∞. Note that Assump-

tion (5a) readily holds since p is Lipschitz continuous on Z and the dual representation (EC.2)

implies that Q(·, y) is a finite maximum of continuous functions for each y ∈ Ȳ by virtue of Assump-

tion EC.2. Assumption 3 then holds by virtue of Assumptions EC.1 and EC.3 and Theorem 7.48

of Shapiro et al. (2009), which also implies that the objective function of problem (1) is continuous

on Z. Next, note that for any z, z̄ ∈Z and a.e. y ∈Y:

|c(z, y)− c(z̄, y)|=
∣∣∣∣p(z) + max

λ∈vert(Λ)
λT (h(y)−T (y, z))− p(z̄)− max

λ∈vert(Λ)
λT (h(y)−T (y, z̄))

∣∣∣∣
≤ |p(z)− p(z̄)|+ max

λ∈vert(Λ)

∣∣λT (T (y, z̄)−T (y, z))
∣∣

≤
[
Lp +LT,z(y)

(
max

λ∈vert(Λ)
‖λ‖
)]
‖z− z̄‖.

Consequently, Assumption (5b) holds by virtue of Assumptions EC.1, EC.2, and EC.3, see page 164

of Shapiro et al. (2009) for details. Finally, note that for any z ∈Z and a.e. x∈X :

c(z, f∗(x) + ε)− g(z;x) =Q(z, f∗(x) + ε)−Eε̄∼Pε [Q(z, f∗(x) + ε̄)]

= max
λ∈vert(Λ)

V (f∗(x) + ε,λ, z)−Eε̄∼Pε
[

max
λ∈vert(Λ)

V (f∗(x) + ε̄, λ, z)

]
≤ max

λ∈vert(Λ)
V (f∗(x) + ε,λ, z)−Eε̄∼Pε [V (f∗(x) + ε̄, λ, z)]
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Consequently, for any z ∈Z and a.e. x∈X :

E
[
exp

(
t
(
c(z, f∗(x) + ε)− g(z;x)

))]
≤E
[
exp

(
t
(

max
λ∈vert(Λ)

V (f∗(x) + ε,λ, z)−Eε̄∼Pε [V (f∗(x) + ε̄, λ, z)]
))]

≤E
[

max
λ∈vert(Λ)

exp
(
t
(
V (f∗(x) + ε,λ, z)−Eε̄∼Pε [V (f∗(x) + ε̄, λ, z)]

))]
≤

∑
λ∈vert(Λ)

E
[
exp

(
t
(
V (f∗(x) + ε,λ, z)−Eε̄∼Pε [V (f∗(x) + ε̄, λ, z)]

))]
≤|vert(Λ)| exp

(
σ2
c (x)t2

2

)
where the last inequality follows from Assumption EC.3. Therefore, Assumption 7 follows from

Assumptions EC.1, EC.2, and EC.3 and Theorem 7.65 of Shapiro et al. (2009). �

The assumption sup
y∈Y

LT,z(y)<+∞ can be relaxed to assume that the moment generating func-

tion of LT,z is finite valued in a neighborhood of zero, see Assumption (C3) and Theorem 7.65

in Section 7.2.9 of Shapiro et al. (2009). The discussion in Section 3 following Assumptions 3, 5,

and 7 provides avenues for relaxing the i.i.d. assumption on the data Dn. The conclusions of Propo-

sition EC.2 can also be established for the case of objective uncertainty (i.e., only the objective

coefficients q depend on Y ) if Assumptions EC.1, EC.2, and EC.3 are suitably modified.

Generalization to a broader class of stochastic programs. Consider the setting where the feasible

region Z is nonempty and compact and the function c(z, ·) in the objective of the stochastic

program (1) is multivariate polynomial with the coefficients of the polynomial being Lipschitz

continuous functions of the decision variables z on the set Z. Furthermore, suppose the random

variable ε has a sub-exponential distribution. We argue that this class of stochastic programs

satisfies Assumptions 2, 2′, 3, and 5. The arguments below can be generalized to the setting

where c(z, ·) is only piecewise-polynomial and the distribution of ε is sufficiently light-tail.

We first note that Assumption (5a) immediately holds for the above setup. Assumptions (A1)

and (A2) in page 164 of Shapiro et al. (2009) also readily hold since moments of all orders are finite

for sub-exponential random variables. Consequently, Assumption (5b) also holds. Assumption 3

holds by similar arguments through Theorem 7.48 of Shapiro et al. (2009). For the remainder of

this section, we focus on establishing that Assumptions 2 and 2′ hold.

We begin by noting that L2
δ(x)(z, f

∗(x) + ε)≤ max
ȳ∈Bδ(x)(f∗(x)+ε)

‖∇yc(z, ȳ)‖2, which implies

sup
z∈Z

L2
δ(x) (z, f∗(x) + ε)≤ sup

z∈Z
max

ȳ∈Bδ(x)(0)
‖∇yc(z, f∗(x) + ε+ ȳ)‖2.

Let H(x, ε) := sup
z∈Z

max
ȳ∈Bδ(x)(0)

‖∇yc(z, f∗(x) + ε+ ȳ)‖2. Note that H(x, ·) is nonnegative and well-

defined for a.e. x∈X , and it can be upper bounded by a polynomial function of the random vector ε

for a.e. x∈X . Therefore, Assumption (2b) follows by the weak LLN since absolute moments of all

orders are finite for sub-exponential random variables. The second part of Assumption 2′ also holds

if the support Ξ of ε is compact as we then have sup
(z,ε)∈Z×Ξ

max
ȳ∈Bδ(0)

‖∇yc(z, f∗(x) + ε+ ȳ)‖<+∞ for

a.e. x∈X .
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Appendix EC.3: Some prediction setups that satisfy our assumptions

We verify that Assumptions 4, 6, and 8 and the corresponding assumptions for the J-SAA and J+-

SAA problems hold for specific regression procedures, and point to resources within the literature

for verifying these assumptions more broadly. We do not attempt to be exhaustive and, for the

most part, restrict our attention to M-estimators (van der Vaart 1998, van de Geer 2000), which

encapsulate a rich class of prediction techniques. We often also consider the special case where

the true model can be written as Y = f(X;θ∗) + ε and the goal of the regression procedure (3) is

to estimate the finite-dimensional parameter θ∗ ∈Θ using the data Dn. To summarize, we largely

consider the regression setup (possibly with a regularization term)

θ̂n ∈ arg min
θ∈Θ

1

n

n∑
i=1

`
(
yi, f(xi;θ)

)
with a particular emphasis on the squared loss `(y, ŷ) = ‖y− ŷ‖2. We call the optimization problem

min
θ∈Θ

E(Y,X)[` (Y, f(X;θ))]

the population regression problem, where the above expectation is taken with respect to the joint

distribution of (Y,X). We mostly assume that the solution set of the population regression problem

is the singleton {θ∗}. Finally, we emphasize that we only deal with the random design case (where

the covariatesX are considered to be random) in this work. Much of the statistics literature presents

results for the fixed design setting in which the covariate observations {xi}ni=1 are deterministic and

designed by the DM. These results readily carry over to the random design setting if the errors ε

are independent of X and no restriction is made on the design points {xi}ni=1.

EC.3.1. Parametric regression techniques

We verify that Assumptions 4, 6 and 8 and their counterparts for the J-SAA and J+-SAA problems

hold for OLS regression, the Lasso and generalized linear regression models under suitable assump-

tions. Theorem 2.6 and Corollary 2.8 of Rigollet and Hütter (2017) present conditions under which

these assumptions hold for best subset selection regression, and Theorem 2.14 therein presents

similar guarantees for the Bayes Information Criterion estimator. Koltchinskii (2009) verifies these

assumptions for the Dantzig selector under certain conditions. Hsu et al. (2012) verifies these con-

ditions for ridge regression. Negahban et al. (2012) provides results for regularized M-estimators

in the high-dimensional setting.



e-companion to Kannan, Bayraksan, and Luedtke: Data-driven SAA with covariate information ec9

EC.3.1.1. Ordinary least squares regression We present sufficient conditions from White

(2014), Hsu et al. (2012), and Rigollet and Hütter (2017) under which Assumptions 4, 6, and 8 hold.

Note that Theorems 2.31 and 4.25 of White (2014) present a general set of sufficient conditions for

θ̂n
p−→ θ∗ and for

√
n(θ̂n− θ∗) to be asymptotically normally distributed. Chapters 3 to 5 of White

(2014) also present analyses that can handle instrumental variables, which can be used to verify

Assumptions 4, 6, and 8 when the errors ε are correlated with the features X. We have the following

result:

Proposition EC.3. Suppose f∗(X) = θ∗X and we use OLS regression to estimate θ∗.

1. Suppose E [|Xiεj|] < +∞, ∀i ∈ [dx] and j ∈ [dy], E [‖X‖2] < +∞, and E [XXT] is positive

definite. If {(xi, εi)}ni=1 is either i.i.d., or a stationary ergodic sequence, then θ̂n a.s. exists for

n large enough and θ̂n
a.s.−−→ θ∗. Consequently, Assumption 4 holds.

2. Suppose E [|Xiεj|2]<+∞, ∀i∈ [dx] and j ∈ [dy], E [‖X‖2]<+∞, E [XXT] is positive definite,

the covariance matrix of the random variable
∑dy

j=1Xεj is positive definite, and {(xi, εi)}ni=1

is i.i.d. Then Assumption 6 holds with α= 1.

3. Suppose {(xi, εi)}ni=1 is i.i.d., the error ε is sub-Gaussian with variance proxy σ2, the covariance

matrix ΣX of the covariates is positive definite, and the random vector Σ
− 1

2
X X is sub-Gaussian.

Then Assumption 8 holds with constants Kf (κ,x) = O(exp(dx)), βf (κ,x) = O
(

κ2

σ2dy‖x‖2

)
,

K̄f (κ) =O(exp(dx)), and β̄f (κ) =O
(

κ2

σ2dy

)
.

Proof. The first part follows from Theorems 3.5 and 3.37 of White (2014). The second part

follows from Theorem 5.3 of White (2014). The third part follows from Remark 12 of Hsu et al.

(2012). If we assume that ε and X are independent, then the third part also follows from The-

orem 2.2 and Remark 2.3 of Rigollet and Hütter (2017). Although Rigollet and Hütter (2017)

consider the fixed design case, their proof readily extends to the above setting since no restrictions

were placed on the design. �

Theorems 3.49 and 3.78 of White (2014) present sufficient conditions under which Assumption 4

holds under mixing and martingale conditions on the data Dn. Theorem 5.17 and Exercise 5.21

of White (2014) present sufficient conditions under which Assumption 6 holds with α= 1 for ergodic

and mixing data Dn, respectively. Note that results in Bryc and Dembo (1996) and Dembo and

Zeitouni (2010) can be used to establish Assumption 8 for the non-i.i.d. setting.

The above results can be used in conjunction with the techniques in Section EC.3.2 to verify

Assumptions 4J, 4J+, 6J, 6J+, 8J, and 8J+ for i.i.d. data Dn. In the remainder of this section, we

specialize the verification of these assumptions for OLS regression when problem (1) is a two-stage

stochastic LP (see Example 1). We assume that dy = 1 for ease of exposition.
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Following Remark 1 and the discussion in Section EC.1, it suffices to establish rates and finite

sample guarantees for the terms 1
n

∑n

i=1‖f̂n(xi)− f̂−i(xi)‖ and 1
n

∑n

i=1‖f̂n(x)− f̂−i(x)‖ when the

assumptions for the ER-SAA problem hold. Let X̄ denote the Rn×dx design matrix with X̄[i] =

(xi)
T

, hi := (X̄(X̄TX̄)−1X̄T)ii denote the ith leverage score, and ei := yi− θ̂T
nx

i denote the residual

of the model f̂n at the ith data point. From Section 10.6.3 of Seber and Lee (2003), we have

1

n

n∑
i=1

‖f̂n(xi)− f̂−i(xi)‖=
1

n

n∑
i=1

hi|ei|
1−hi

≤

√√√√ 1

n

n∑
i=1

(hi)2

√√√√ 1

n

n∑
i=1

(
ei

1−hi

)2

≤ dx√
n

√√√√ 1

n

n∑
i=1

(
ei

1−hi

)2

,

1

n

n∑
i=1

‖f̂n(x)− f̂−i(x)‖ ≤ ‖x‖
n

n∑
i=1

∥∥∥∥(X̄TX̄)−1xiei

1−hi

∥∥∥∥≤ ‖x‖
√√√√ 1

n

n∑
i=1

∥∥(X̄TX̄)−1xi
∥∥2

√√√√ 1

n

n∑
i=1

(
ei

1−hi

)2

≤ ‖x‖
√

1

n
Tr((X̄TX̄)−1)

√√√√ 1

n

n∑
i=1

(
ei

1−hi

)2

,

where Tr denotes the trace operator. The quantity

√
1
n

∑n

i=1

(
ei

1−hi

)2

is called the prediction resid-

ual sum of squares statistic and is bounded in probability under mild assumptions. The above

inequalities can be used to verify the assumptions for the Jackknife-based estimators for Example 1.

EC.3.1.2. The Lasso and high-dimensional generalized linear models Follow-

ing van de Geer (2008) and Bunea et al. (2007), we consider generalized linear models with

an `1-penalty. We assume that dy = 1 for ease of exposition. The setup is as follows: the model

class F :=

{
f : f(·;θ) :=

m∑
k=1

θkψk(·), θ ∈Θ

}
, where {ψk(·)}mk=1 is a sequence of real-valued basis

functions with domain X , the data Dn is assumed to be i.i.d., the number of basis functions m

grows subexponentially with the number of data samples n, the set Θ is convex, the loss function `

satisfies some Lipschitz assumptions (see Assumption L and Example 4 of van de Geer 2008), and

the estimate θ̂n of θ∗ is obtained as

θ̂n ∈ arg min
θ∈Θ

1

n

n∑
i=1

`
(
yi, f(xi;θ)

)
+λn

m∑
k=1

(
1

n

n∑
i=1

ψ2
k(x

i)

) 1
2

|θk|

for some penalty parameter λn =O

(√
logm
n

)
that is chosen large enough. The above setup captures

both parametric and nonparametric regression models. Theorem 2.2 of van de Geer (2008) and

Theorems 2.1, 2.2, and 2.3 of Bunea et al. (2007) present conditions under which Assumptions 4, 6

and 8 hold for the above setting.

In the remainder of this section, we specialize the results of Bunea et al. (2007) to the traditional

Lasso setup (Tibshirani 1996). In this setup, m= dx, ψk(x) = xk, Θ =Rdx , and `(y, ŷ) = ‖y− ŷ‖2.
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Proposition EC.4. Suppose f∗(X) = θ∗X with ‖θ∗[j]‖0 ≤ s, ∀j ∈ [dy], the sequences {xi}ni=1 and

{εi}ni=1 are i.i.d., and the error ε is sub-Gaussian with variance proxy σ2. Additionally, suppose

the support X of the covariates X is compact, E [|Xj|2]> 0, ∀j ∈ [dx], and the matrix E [XXT]−

τdiag(E [XXT]) is positive semidefinite for some constant τ ∈ (0,1]. If we use the Lasso to estimate

θ∗, then Assumption 4 holds, Assumption 6 holds with α= 1, and Assumption 8 holds with K̄f (κ) =

Kf (κ,x) =O(dx), β̄f (κ) =O
(

κ2

σ2sdy

)
, and βf (κ,x) =O

(
κ2

σ2sdy‖x‖2

)
.

Proof. Follows from Theorem 2.1 and Corollary 1 of Bunea et al. (2007). �

Chatterjee (2013) establishes consistency of the Lasso under the following weaker assumptions:

the data Dn is i.i.d., the error ε is sub-Gaussian with variance proxy σ2 and is independent of the

covariatesX, the support X of the covariates is compact, and the covariance matrix of the covariates

is positive definite. Theorems 1 and 2 therein present conditions under which Assumption 6 holds

at a slower rate with α = 0.5. Theorem 2.15 of Rigollet and Hütter (2017) can then be used to

show that Assumption 8 holds with K̄f (κ) =Kf (κ,x) =O(dx), β̄f (κ) =O
(

κ4

σ2s2d2
y

)
, and βf (κ,x) =

O
(

κ4

σ2s2d2
y‖x‖2

)
. Basu and Michailidis (2015) present conditions under which Assumptions 4, 6,

and 8 can be verified for time series data Dn. The above results can be used in conjunction with

the discussion in Section EC.3.2 to derive rates of convergence and finite sample guarantees for the

Jackknife-based estimators for i.i.d. data Dn.

EC.3.2. Theory for general M-estimators

We use results from Chapter 5 of van der Vaart (1998), Chapter 3 of van der Vaart and Wellner

(1996), and Shapiro et al. (2009) to verify Assumptions 4, 6 and 8 for general M-estimators. To

begin, we suppose that the regression function f(x; ·) is Lipschitz continuous at θ∗ for a.e. x ∈ X

with Lipschitz constant Lf (x), i.e., we a.s. have ‖f(x;θ∗)−f(x; θ̂n)‖ ≤Lf (x)‖θ∗− θ̂n‖. To establish

Assumptions 4 and 6, it suffices to assume that the function f(x, ·) is locally Lipschitz continuous

at θ∗ and a.s. for n large enough, the estimates θ̂n of θ∗ lie in some compact subset of Θ. Note that

1

n

n∑
i=1

‖f(xi;θ∗)− f(xi; θ̂n)‖2 ≤

(
1

n

n∑
i=1

L2
f (xi)

)
‖θ∗− θ̂n‖2,

with the first term in the r.h.s. of the above inequality bounded in probability under a suitable

weak LLN assumption. Therefore, our main focus is presenting rates at which ‖θ∗− θ̂n‖
p−→ 0.

Verifying Assumption 4. Theorem 5.7 of van der Vaart (1998) presents conditions under which

θ̂n
p−→ θ∗ for i.i.d. data Dn (cf. Theorems 5.3 and 5.4 of Shapiro et al. 2009). Similar to the discus-

sion following Assumption 3, this result also holds when Dn satisfies certain mixing/stationarity

assumptions. Section 5.2 of van der Vaart (1998) also presents alternative conditions for θ̂n
p−→ θ∗.
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Verifying Assumption 6. We discuss conditions under which ‖θ̂n−θ∗‖
p−→ 0 at certain rates. The-

orem 5.23 of van der Vaart (1998) presents regularity conditions under which this convergence

holds at the conventional n−0.5 rate, in which case Assumption 6 holds with α= 1 (cf. Theorem 5.8

of Shapiro et al. 2009). Once again, the above conclusion holds when the observations Dn sat-

isfy certain mixing/stationarity assumptions. Chapter 5 of van der Vaart (1998) and Chapter 3.2

of van der Vaart and Wellner (1996) provide some examples of M-estimators that possess this rate

of convergence. Theorem 5.52 and Chapter 25 of van der Vaart (1998) present conditions under

which Assumption 6 holds with constant α< 1 (including the setting of semiparametric regression).

Verifying Assumption 8. We verify this assumption by establishing finite sample guarantees for

θ̂n when the M-estimation problem satisfies uniform exponential bounds similar to Assumption 7.

Specifically, suppose for any constant κ> 0, there exist positive constants K̂(κ) and β̂(κ) such that

P

{
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

`
(
yi, f(xi;θ)

)
−E(Y,X)[` (Y, f(X;θ))]

∣∣∣∣∣>κ
}
≤ K̂(κ) exp

(
−nβ̂(κ)

)
,

see the discussion surrounding Assumption 7 for conditions under which such a uniform exponential

bound holds (the main restriction there is that Θ is compact, but this can be relaxed by assuming

that the estimates θ̂n lie in a compact subset of Θ, see the discussion following Theorem 5.3 of

Shapiro et al. 2009). Theorem 2.3 of Homem-de-Mello (2008) then implies that Assumption 8 holds

whenever the sample average term 1
n

∑n

i=1L
2
f (xi) is bounded. We note that results in Bryc and

Dembo (1996), Dembo and Zeitouni (2010) can be used to establish such uniform exponential

bounds for mixing data Dn by adapting Lemma 2.4 of Homem-de-Mello (2008).

Verifying the assumptions for the Jackknife-based methods. We now present techniques for veri-

fying Assumptions 4J, 4J+, 6J, 6J+, 8J, and 8J+ when the data Dn is i.i.d. Noting from Markov’s

inequality that

P

{
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2 >κ2

}
≤ 1

nκ2

n∑
i=1

EDN
[
‖f∗(xi)− f̂−i(xi)‖2

]
=

1

κ2
EDn−1,X

[
‖f∗(X)− f̂n−1(X)‖2

]
,

P

{
1

n

n∑
i=1

‖f∗(x)− f̂−i(x)‖2 >κ2

}
≤ 1

nκ2

n∑
i=1

EDn
[
‖f∗(x)− f̂−i(x)‖2

]
=

1

κ2
EDn−1

[
‖f∗(x)− f̂n−1(x)‖2

]
,

we have that Assumptions 6J and 6J+ on the Jackknife-based methods hold if, for a.e. x ∈ X ,

the expectations EDn−1,X

[
‖f∗(X)− f̂n−1(X)‖2

]
and EDn−1

[
‖f∗(x)− f̂n−1(x)‖2

]
converge to zero

at suitable rates. Under the aforementioned Lipshitz continuity assumption on the function f(x; ·)

at θ∗ and the assumption that E
[
L2
f (X)

]
<+∞, it suffices to establish rates of convergence for the

expectation term EDn−1

[
‖θ∗− θ̂n−1‖2

]
. These results can be readily obtained under assumptions

on the curvature of the loss function of the M-estimation problem (e.g., restricted strong convexity)

around the true parameter θ∗, see Negahban et al. (2012) for instance. Chapter 14 of Biau and
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Devroye (2015) provides similar rate results for kNN regression. Alternatively, we can also bound

the terms appearing in the assumptions for the Jackknife-based formulations as

1

n

n∑
i=1

‖f(x;θ∗)− f(x; θ̂−i)‖2 ≤
1

n

n∑
i=1

L2
f (x)‖θ∗− θ̂−i‖2,

1

n

n∑
i=1

‖f(xi;θ∗)− f(xi; θ̂−i)‖2 ≤
1

n

n∑
i=1

L2
f (xi)‖θ∗− θ̂−i‖2 ≤

√√√√ 1

n

n∑
i=1

L4
f (xi)

√√√√ 1

n

n∑
i=1

‖θ∗− θ̂−i‖4,

with the first term in the r.h.s. of the last inequality bounded under appropriate LLN assumptions.

Therefore, an alternative is to establish rates and finite sample guarantees for the terms 1
n

∑n

i=1‖θ∗−
θ̂−i‖4 and 1

n

∑n

i=1L
4
f (xi). A third direct approach is to use the weaker bounds

P

{
1

n

n∑
i=1

‖f∗(xi)− f̂−i(xi)‖2 >κ2

}
≤

n∑
i=1

P
{
‖f∗(xi)− f̂−i(xi)‖2 >κ2

}
= nP

{
‖f∗(X)− f̂n−1(X)‖2 >κ2

}
,

P

{
1

n

n∑
i=1

‖f∗(x)− f̂−i(x)‖2 >κ2

}
≤

n∑
i=1

P
{
‖f∗(x)− f̂−i(x)‖2 >κ2

}
= nP

{
‖f∗(x)− f̂n−1(x)‖2 >κ2

}
.

Finally, note that it is sufficient to establish rates and finite sample guarantees for the terms

1
n

∑n

i=1‖f̂n(xi)− f̂−i(xi)‖2 and 1
n

∑n

i=1‖f̂n(x)− f̂−i(x)‖2 when Assumptions 4, 6, and 8 are enforced.

EC.3.3. Nonparametric regression techniques

We verify that Assumptions 4 and 6 hold for kNN regression, CART, and RF regression, and state a

large deviation result similar to Assumption 8 for kNN regression. The discussion in Section EC.3.2

then provides an avenue for verifying the corresponding assumptions for the J-SAA and J+-SAA

problems for i.i.d. data Dn. Note that Walk (2010), Györfi et al. (2006), and Chen and Shah

(2018) can be used to verify some of these assumptions for kernel regression and semi-recursive

Devroye-Wagner estimates for mixing data Dn, Raskutti et al. (2012) can be used to verify these

assumptions for sparse additive nonparametric regression, Chapter 13 of Wainwright (2019) can be

used to verify these assumptions for (regularized) nonparametric least squares regression, and Seijo

and Sen (2011) and Mazumder et al. (2019) can be used to verify these assumptions for convex

regression. In what follows, we only consider the setting where the data Dn is i.i.d.

We assume that the kNN regression estimate is computed as follows: given parameter k ∈ [n]

and x ∈ X , define f̂n(x) :=
1

k

k∑
i=1

y(i)(x), where {(y(i)(x), x(i)(x))}ni=1 is a reordering of the data

{(yi, xi)}ni=1 such that ‖x(j)(x)−x‖ ≤ ‖x(k)(x)−x‖ whenever j ≤ k (if ‖x(j)(x)−x‖= ‖x(k)(x)−x‖

for some j < k, then we assume that (y(j)(x), x(j)(x)) appears first in the reordering).

Proposition EC.5. Suppose the data Dn is i.i.d. and the support X of the covariates is compact.

Consider the setting where we use kNN regression to estimate the regression function f∗ with the

parameter ‘k’ satisfying lim
n→∞

k
log(n)

=∞ and k= o(n).
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1. Suppose the function f∗ is continuous on X . If the distribution of the errors ε satisfies

sup
x∈X

E [exp(λ|εj|) |X = x]<+∞ for each j ∈ [dy] and some λ> 0, then Assumption 4 holds.

2. Suppose the function f∗ is twice continuously differentiable on X , the random vector X has a

density that is twice continuously differentiable, and the error ε is sub-Gaussian. Then, there

exists a choice of the parameter ‘k’ such that Assumption 6 holds with α= O(1)

dx
.

3. Suppose the function f∗ is Lipschitz continuous on X , the error ε is sub-Gaussian with variance

proxy σ2, and there exists a constant τ > 0 such that the distribution PX of the covariates

satisfies P{X ∈Bκ(x)} ≥ τκdx, ∀x ∈ X and κ > 0. Then, for sample size n satisfying n ≥

O(1)k

(
O(1)

κ

)dx
and

nγ

log(n)
≥ O(1)dxdyσ

2

κ2
, we have

P
{

sup
x∈X
‖f∗(x)− f̂n(x)‖>κ

√
dy

}
≤
(
O(1)

√
dx

κ

)dx
exp

(
−O(1)n(O(1)κ)2dx

)
+O(1)n2dx

(
O(1)

dx

)dx
exp

(
− kκ2

O(1)σ2

)
.

Proof. The first part follows from Theorem 12.1 of Biau and Devroye (2015). The second part

follows from Theorems 14.3 and 14.5 of Biau and Devroye (2015) and Markov’s inequality. The

last part follows from Lemma 10 of Bertsimas and McCord (2019). �

Lemma 7 of Bertsimas and McCord (2019) presents conditions under which CART regression

satisfies Assumption 4. Along with Theorem 8 of Wager and Athey (2018), the above result can be

used to show that Assumption 6 holds for CART regression with α= O(1)

dx
. Lemma 9 of Bertsimas

and McCord (2019) presents conditions under which RF regression satisfies Assumption 4. Once

again, we can use this result along with Theorem 8 of Wager and Athey (2018) to show that

Assumption 6 holds for RF regression with α= O(1)

dx
.

Appendix EC.4: Omitted details for the computational experiments

The parameters ϕ∗ and ζ∗ in the true demand model are specified as:

ϕ∗j = 50 + 5δj0, ζ∗j1 = 10 + δj1, ζ∗j2 = 5 + δj2, and ζ∗j3 = 2 + δj3, ∀j ∈J ,

where {δj0}j∈J are i.i.d. samples from the standard normal distribution N (0,1), and {δj1}j∈J ,

{δj2}j∈J , and {δj3}j∈J are i.i.d. samples from the uniform distribution U(−4,4). We generate i.i.d.

samples of the covariates X from a multivariate folded/half-normal distribution. We specify the

underlying normal distribution to have mean µX = 0 and set its covariance matrix ΣX to be a

random correlation matrix that is generated using the ‘vine method’ of Lewandowski et al. (2009)

(each partial correlation is sampled from the Beta(2,2) distribution and rescaled to [−1,1]). Finally,

Algorithm 1 describes our procedure for estimating the normalized 99% UCB on the optimality

gap of our data-driven solutions using the multiple replication procedure (Mak et al. 1999).
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Algorithm 1 Estimating the normalized 99% UCB on the optimality gap of a given solution.

1: Input: Covariate realization X = x and data-driven solution ẑn(x) for a particular realization

of the data Dn.

2: Output: B̂99(x), which is a normalized estimate of the 99% UCB on the optimality gap of ẑn(x).

3: for k= 1, · · · ,30 do

4: Draw 1000 i.i.d. samples D̄k := {ε̄k,i}1000
i=1 of ε according to the distribution Pε.

5: Estimate the optimal value v∗(x) by solving the full-information SAA problem (2) using

the data D̄k:

v̄k(x) := min
z∈Z

1

1000

1000∑
i=1

c(z, f∗(x) + ε̄k,i).

6: Estimate the out-of-sample cost of the solution ẑn(x) using the data D̄k:

v̂k(x) :=
1

1000

1000∑
i=1

c(ẑn(x), f∗(x) + ε̄k,i).

7: Estimate the optimality gap of the solution ẑn(x) as Ĝk(x) = v̂k(x)− v̄k(x).

8: end for

9: Construct the normalized estimate of the 99% UCB on the optimality gap of ẑn(x) as

B̂99(x) :=
100

|v̄(x)|

 1

30

30∑
k=1

Ĝk(x) + 2.462

√
var({Ĝk(x)})

30

 ,

where v̄(x) :=
1

30

30∑
k=1

v̄k(x) and var({Ĝk(x)}) denotes the variance of the gaps {Ĝk(x)}30
k=1.
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