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Abstract

We consider data-driven approaches that integrate a machine learning prediction model within
distributionally robust optimization (DRO) given limited joint observations of uncertain parameters
and covariates. Our framework is flexible in the sense that it can accommodate a variety of learning
setups and DRO ambiguity sets. We investigate the asymptotic and finite sample properties of solu-
tions obtained using Wasserstein, sample robust optimization, and phi-divergence-based ambiguity
sets within our DRO formulations, and explore cross-validation approaches for sizing these ambiguity
sets. Through numerical experiments, we validate our theoretical results, study the effectiveness of
our approaches for sizing ambiguity sets, and illustrate the benefits of our DRO formulations in the
limited data regime even when the prediction model is misspecified.

Key words: Data-driven stochastic programming, distributionally robust optimization, Wasserstein
distance, phi-divergences, covariates, machine learning, convergence rate, large deviations

1 Introduction

Stochastic programming [40] is a powerful modeling framework for decision-making under uncertainty
that finds applications in engineering, operations research, and economics. A standard formulation of a
stochastic program is

min
z∈Z

E [c(z, Y )] , (1)

where z denotes the decision vector, Z ⊆ Rdz is the set of feasible decision vectors, Y denotes a random
vector of model parameters, and c : Rdz×Rdy → R is an extended real-valued objective function. Because
the distribution of the random vector Y is typically unknown, popular data-driven approaches for solving
problem (1), such as sample average approximation (SAA) [28, 40], only assume access to a finite sample
of Y . Often, in real-world applications, the random vector Y (e.g., demand for a new product) can be
predicted using knowledge of covariates X (e.g., web chatter and historical demands for similar existing
products). In our previous work [29], we investigated extensions of SAA that can incorporate covariate
information in problem (1) and studied the asymptotic and finite sample properties of the resulting
solutions (see Section 2.2). Despite its favorable theoretical guarantees [28, 29, 40], a limitation of the
SAA approach is that its solutions may exhibit disappointing out-of-sample performance in the small
sample size regime [7, 19].

Distributionally robust optimization (DRO) [37] is a framework for addressing ambiguity in the
distribution of Y . The DRO counterpart of problem (1) can be formulated as

min
z∈Z

sup
Q∈P̂

EY∼Q [c(z, Y )] , (2)
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where we minimize the worst-case expected objective over an ambiguity set P̂ of distributions. Several
studies have shown that the DRO problem (2) can regularize a small-sample SAA of problem (1) and its
solutions can mitigate the out-of-sample disappointment of decisions determined using the SAA approach
(see the reviews [30, 37]).

We introduce a DRO framework for decision-making under uncertainty in the presence of covariate
information and study its theoretical properties. We first consider the setup in [2, 8, 39] for incorporating
covariate information in problem (1). Suppose we have access to joint observations of the random vector
Y and random covariates X. Given a new random observation X = x, our goal is to approximate the
solution to the conditional stochastic program

v∗(x) := min
z∈Z

E [c(z, Y ) | X = x] . (SP)

Some applications of this framework include shipment planning under demand uncertainty [8, 9], where
products’ demands can be predicted using past demands, location, and web search results before making
production and inventory decisions, and portfolio optimization under market uncertainty [16], where
stock prices can be predicted using economic indicators and historical stock data before making invest-
ment decisions.

Motivated by applications where we may only have access to limited data, we consider data-driven
DRO formulations that incorporate a statistical or machine learning model within a DRO framework
in a bid to construct estimators for (SP) with better out-of-sample performance. We define our DRO
frameworks in Section 3, and analyze their asymptotic and finite sample properties in Sections 4 and 5.
Section 4 focuses on ambiguity sets defined using Wasserstein distances, whereas Section 5 studies a family
of ambiguity sets with discrete support. We investigate data-driven methods for choosing the radii of
these ambiguity sets in the presence of covariate observations in Section 6. Numerical experiments in
Section 7 demonstrate the potential benefits of our data-driven DRO estimators in the limited data
regime.

1.1 Related work

We begin by reviewing related work that aims to solve the conditional stochastic program (SP) without
using DRO. Ban and Rudin [2] and Bertsimas and Kallus [8] study policy-based empirical risk minimiza-
tion and nonparametric regression-based reweighted SAA approaches for solving (SP). Bertsimas and
Kallus [8] establish asymptotic optimality of their data-driven decisions, whereas Ban and Rudin [2] also
present finite sample guarantees in the context of the data-driven newsvendor problem. Bazier-Matte
and Delage [5] explore linear decision rules for a regularized portfolio selection problem given side infor-
mation. They derive finite sample and suboptimality performance guarantees for their solutions. Ban et
al. [1] and Sen and Deng [39] use parametric regression methods along with their empirical residuals to
generate scenarios of the random variables given covariate information. Ban et al. [1] prove asymptotic
optimality of their decisions for their particular application. Kannan et al. [29] introduce two new SAA
formulations that use leave-one-out residuals. They identify conditions under which solutions to their
data-driven SAAs possess asymptotic and finite sample guarantees. See Kannan et al. [29] for a review
of other data-driven approximations to (SP) that do not use DRO.

Solutions to the above approximations to (SP) might display poor out-of-sample performance when
we only have access to limited joint data on the random variables and covariates. DRO offers a structured
framework for determining solutions with better out-of-sample performance in such situations. Next, we
review related work that attempts to solve (SP) using DRO.

Hanasusanto and Kuhn [26] study multi-stage stochastic programs with time series data. They pro-
pose a χ2-distance-based DRO formulation that uses Nadaraya-Watson regression estimates to approx-
imate value functions, and solve it using an approximate dynamic programming method. Bertsimas et
al. [9] consider a multi-stage DRO extension of the approach in [8] using the sample robust optimization
method of [10]. They demonstrate asymptotic optimality of their decisions and develop an approximate
solution method using linear decision rules. Bertsimas and Van Parys [12] propose a notion of ‘bootstrap
robustness’. They define DRO extensions of the Nadaraya-Watson and k-nearest neighbors formulations
in [8] using ambiguity sets based on discrepancy measures and study their theoretical properties.

Blanchet et al. [14] and Nguyen et al. [35] consider Wasserstein DRO formulations of single-stage
stochastic programs arising in statistics or machine learning applications. Blanchet et al. [14] study how
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to optimally size their ambiguity sets. Dou and Anitescu [16] consider a tailored Wasserstein DRO for-
mulation of single-stage stochastic convex programs when the data obeys a linear vector autoregressive
model and derive its tractable dual. Finally, Esteban-Pérez and Morales [20] construct a Wasserstein
DRO extension of (SP) by linking trimmings of probability distributions with the partial mass trans-
portation problem. They show that their approach naturally produces DRO extensions of formulations
based on some nonparametric regression techniques. They also allow for the available data to be con-
taminated, and establish asymptotic and finite sample guarantees for their solutions.

We consider a flexible data-driven DRO extension of (SP) that integrates a machine learning pre-
diction model within a DRO framework. Our work is similar in spirit to [16, 20], but we consider more
general formulations (SP), including two-stage stochastic programs, generic prediction models, and more
general DRO setups, including ones based on Wasserstein distances, sample robust optimization, and
phi-divergences. A key difference between our Wasserstein DRO formulation in Section 4 and the formu-
lation in [16] is that we consider an ambiguity set for the residuals of the prediction model, but do not
consider one for its coefficients. We investigate the theoretical properties of our residuals-based DRO
formulations in Sections 4 and 5. The case study in Section 7 demonstrates the benefit of the modularity
of our formulations.

1.2 Summary of main contributions

The following summarizes the main contributions of this paper:

1. We introduce a general residuals-based DRO framework for approximating the solution to prob-
lem (SP) based on the data-driven SAA framework in [29]. Our DRO framework is flexible and
seamlessly extends existing DRO formulations that do not utilize covariate information.

2. We study asymptotic optimality, rates of convergence, and finite sample guarantees of solutions
determined using Wasserstein ambiguity sets.

3. We consider a family of ambiguity sets with only discrete distributions and study the asymptotic
and finite sample properties of resulting solutions.

4. We investigate three data-driven approaches for choosing the radii of ambiguity sets for our
residuals-based DRO formulations.

5. Finally, our numerical experiments investigate the effectiveness of proposed approaches for sizing
ambiguity sets, validate our theoretical results, and demonstrate the advantages of our data-driven
DRO formulations in the limited data regime even when the prediction model is misspecified.

Notation. Let [n] := {1, . . . , n}, ‖·‖p denote the `p-norm for p ∈ [1,+∞], projS(v) denote the orthog-
onal projection of v onto a nonempty closed convex set S, and δ denote the Dirac measure. We write ‖·‖
as shorthand for ‖·‖2. Let P(S) denote the space of probability distributions with support contained in
the set S ⊆ Rdy . Given Q1, Q2 ∈ P(S), let Π(Q1, Q2) denote the set of joint distributions with marginals
Q1 and Q2. The p-Wasserstein distance dW,p(Q1, Q2) between Q1 and Q2 with respect to the `2-norm1

is given by

dW,p(Q1, Q2) :=

(
inf

π∈Π(Q1,Q2)

∫
S2

‖y1 − y2‖pdπ(y1, y2)

)1/p

, if p ∈ [1,+∞),

dW,∞(Q1, Q2) := inf
π∈Π(Q1,Q2)

π-ess sup
S×S

‖y1 − y2‖,

where π-ess supS×S‖y1 − y2‖ := inf{C : π(‖y1 − y2‖ > C) = 0} denotes the essential supremum with
respect to the measure π. For any S ⊆ Rdz , let L∞(S) denote the Banach space of essentially bounded
functions on S equipped with the supremum norm. For sets A,B ⊆ Rdz , let D (A,B) := supv∈A dist(v,B)
denote the deviation of A from B, where dist(v,B) := infw∈B‖v − w‖.

The abbreviations ‘a.e.’, ‘a.s.’, ‘LLN’, ‘i.i.d.’, and ‘r.h.s.’ are shorthand for ‘almost everywhere’,
‘almost surely’, ‘law of large numbers’, ‘independent and identically distributed’, and ‘right-hand side’.

1Our results can be extended to Wasserstein distances defined using `q-norms with q 6= 2.
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For a random vector V with probability measure PV , we write a.e. v ∈ V to denote PV -a.e. v ∈ V .

The symbols
p−→,

a.s.−−→, and
d−→ denote convergence in probability, almost surely, and in distribution with

respect to the probability measure generating the joint data on the random variables Y and the random
covariates X. For random sequences {Vn} and {Wn}, we write Vn = op(Wn) and Vn = Op(Wn) to
convey that Vn = RnWn with {Rn} converging in probability to zero, or being bounded in probability,
respectively. We write O(1) to denote generic constants and vn = Θ(wn) to mean that the sequence {vn}
is asymptotically bounded both above and below by the sequence {wn}. We ignore measurability-related
issues throughout this work (see [40, 42] for consideration of these issues).

2 Preliminaries

2.1 Framework

We assume throughout that the random vector Y is related to the random covariates X as Y = f∗(X)+ε,
where f∗(x) := E [Y | X = x] is the regression function and the random vector ε is the associated
regression error. We also assume that the zero-mean errors ε are independent of the covariates X, and
that f∗ is known to belong to a class of functions F . The model class F can be infinite-dimensional and
can depend on the sample size n. Let Y ⊆ Rdy , X ⊆ Rdx , and Ξ ⊆ Rdy denote the supports of Y , X,
and ε, respectively. Additionally, let PY |X=x denote the conditional distribution of Y given X = x and
PX and Pε denote the distribution of X and ε. Finally, we assume that the support Y is nonempty and
convex, which ensures that the orthogonal projection onto Y is unique and Lipschitz continuous. If Y
is not convex (e.g., if it is discrete), one option is to instead project onto its convex hull, conv(Y), and
replace Y by conv(Y) in our formulations, assumptions, and results.

Under the above assumptions, problem (SP) is equivalent to

v∗(x) = min
z∈Z
{g(z;x) := E [c(z, f∗(x) + ε)]} , (3)

where the expectation is computed with respect to the distribution Pε of ε. We refer to problem (3) as the
true problem. We assume throughout that the set Z is nonempty and compact, E [|c(z, f∗(x) + ε)|] < +∞
for each z ∈ Z and a.e. x ∈ X , and the function g(·;x) is lower semicontinuous on Z for a.e. x ∈ X .
These assumptions ensure that problem (3) is well-defined and the set S∗(x) of optimal solutions to
problem (3) is nonempty for a.e. x ∈ X .

2.2 Review of data-driven SAA formulations

We now summarize the residuals-based SAA formulations considered in [29]. Let Dn := {(yi, xi)}ni=1

denote the joint observations of (Y,X) and {εi}ni=1, with εi := yi − f∗(xi), ∀i ∈ [n], denote the corre-
sponding realizations of the errors. If we know the regression function f∗, then we can construct the
following full-information SAA (FI-SAA) to problem (3) using the data Dn:

min
z∈Z

{
g∗n(z;x) :=

1

n

n∑
i=1

c(z, f∗(x) + εi)
}
. (4)

Because f∗ is unknown, we first estimate it by f̂n using a regression method on the data Dn. We then use
f̂n and its residuals on the training data ε̂in := yi − f̂n(xi), i ∈ [n], to construct the following empirical
residuals-based SAA2 (ER-SAA) to problem (3):

v̂ERn (x) := min
z∈Z

{
ĝERn (z;x) :=

1

n

n∑
i=1

c
(
z,projY(f̂n(x) + ε̂in)

)}
. (5)

When the sample size n is small relative to the complexity of the regression method, the empirical
residuals {ε̂in}ni=1 may be optimistically biased and provide a poor estimate of the samples {εi}ni=1 of ε.

2In contrast with [29], we project the points (f̂n(x) + ε̂in), i ∈ [n], onto the support Y in this work. This projection step
ensures that the Wasserstein and sample robust optimization-based DRO formulations considered in Section 3 are tractable
under suitable assumptions on the true problem (3). We stick with this modification of the ER-SAA formulation (5)
throughout for uniformity.
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This motivated our construction in [29] of two alternative SAA formulations that instead use leave-one-
out (Jackknife) residuals to construct scenarios of Y given X = x.

Let P ∗n(x) denote the true empirical distribution of Y given X = x corresponding to the FI-SAA
problem (4) and P̂ERn (x) denote the estimated empirical distribution corresponding to the ER-SAA
problem (5), i.e.,

P ∗n(x) :=
1

n

n∑
i=1

δf∗(x)+εi , P̂ERn (x) :=
1

n

n∑
i=1

δprojY(f̂n(x)+ε̂in).

A main component of the analysis conducted in this paper is controlling the distance between the
estimated empirical distribution P̂ERn (x) and the true empirical distribution P ∗n(x). To enable this, note
that the Lipschitz continuity of orthogonal projections3 implies that for each x ∈ X

‖projY(f̂n(x) + ε̂in)− (f∗(x) + εi)‖ ≤ ‖ε̃in(x)‖, ∀i ∈ [n], (6)

where ε̃in(x) := (f̂n(x) + ε̂in)− (f∗(x) + εi) =
(
f̂n(x)−f∗(x)

)
+
(
f∗(xi)− f̂n(xi)

)
. Note that ε̃in(x) equals

the sum of the prediction error at the new covariate realization x ∈ X and the estimation error at the
training point xi ∈ X .

3 Residuals-based DRO formulations

We consider the following DRO extension of the data-driven SAA formulations reviewed in Section 2.2
to approximate the solution to the true problem (3):

v̂DROn (x) = min
z∈Z

sup
Q∈P̂n(x)

EY∼Q [c(z, Y )] , (7)

where P̂n(x) is a data-driven ambiguity set for the distribution of Y given X = x that is centered at
P̂ERn (x). Let ẑDROn (x) denote an optimal solution to problem (7) and ŜDROn (x) denote its set of optimal
solutions. We assume throughout that for each x ∈ X , the function EY∼Q [c(·, Y )] is well-defined and

lower semicontinuous on Z for each Q ∈ P̂n(x). This ensures that for each x ∈ X , the objective function
of the problem (7) is lower semicontinuous on Z and its optimal solution set ŜDROn (x) is nonempty.

We seek to derive DRO formulations (7) that obtain a solution ẑDROn (x) with good out-of-sample
performance g(ẑDROn (x);x) for small sample sizes n. To support our investigation of such formulations,
we consider different desirable properties they may have. Given a risk level α ∈ (0, 1), we wish to
construct the ambiguity set P̂n(x) such that one or more of the following properties hold for a.e. x ∈ X
(cf. [7, 19]):

1. Consistency and asymptotic optimality: the optimal value v̂DROn (x) and solution ẑDROn (x) of
the residuals-based DRO problem (7) satisfy

v̂DROn (x)
p−→ v∗(x), dist(ẑDROn (x), S∗(x))

p−→ 0, g(ẑDROn (x);x)
p−→ v∗(x).

2. Rate of convergence: for some constant r ∈ (0, 1] (ideally close to one), the optimal value
v̂DROn (x) and solution ẑDROn (x) satisfy∣∣v̂DROn (x)− v∗(x)

∣∣ = Op
(
n−r/2

)
,
∣∣g(ẑDROn (x);x)− v∗(x)

∣∣ = Op
(
n−r/2

)
.

3. Finite sample certificate guarantee: the optimal value v̂DROn (x) provides the following certifi-
cate on the out-of-sample cost of ẑDROn (x):

P
{
g(ẑDROn (x);x) ≤ v̂DROn (x)

}
≥ 1− α.

We would also like the solution ẑDROn (x) to possess the following guarantee:

3For any u, v ∈ Rdy , ‖projY (u)− projY (v)‖ ≤ ‖u− v‖.
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4. Finite sample solution guarantee: for a.e. x ∈ X and any η > 0, there exist positive con-
stants Γ(η, x) and γ(η, x) such that the solution ẑDROn (x) of the DRO problem (7) with a suitable
specification of the radius of the ambiguity set P̂n(x) satisfies

P
{

dist(ẑDROn (x), S∗(x)) ≥ η
}
≤ Γ(η, x) exp(−nγ(η, x)).

Finally, we would also like problem (7) to be efficiently solvable in practice. Although our asymptotic
guarantees are stated in terms of convergence in probability, they can be naturally extended to consider
almost sure convergence under stronger assumptions on problem (3) and the regression estimate f̂n.

We call problem (7) with the ambiguity set P̂n(x) centered at P̂ERn (x) the empirical residuals-based
DRO (ER-DRO) problem. While in this paper we focus our attention on ER-DRO formulations, note
that the ambiguity set P̂n(x) can also be centered at the estimated empirical distributions corresponding
to its Jackknife-based counterparts introduced in [29]. The analysis in [29, Appendix EC.1] can be used
to extend this paper’s results for ER-DRO to its Jackknife-based variants.

In the remainder of this work, we focus on the use of the following data-driven ambiguity sets P̂n(x)
in the construction of ER-DRO problem (7). Unlike the classical DRO setting [37], we allow the radius
of these ambiguity sets P̂n(x) to depend not only on the sample size n and the risk level α that, e.g.,
shows up in the finite sample certificate, but also on the covariate realization x ∈ X ; see ζn(x) and µn(x)
below. We often omit the dependence of the radius on α to simplify notation.

1. Wasserstein-based ambiguity sets (cf. [19, 25, 36]): given radius ζn(x) ≥ 0 and order p ∈ [1,+∞],
set

P̂n(x) =
{
Q ∈ P(Y) : dW,p(Q, P̂

ER
n (x)) ≤ ζn(x)

}
.

2. Sample robust optimization-based ambiguity sets (cf. [10, 45]): given radius µn(x) ≥ 0 and param-
eter p ∈ [1,+∞], set4

P̂n(x) =
{
Q =

1

n

n∑
i=1

δȳi : ‖ȳi − projY(f̂n(x) + ε̂in)‖p ≤ µn(x), ȳi ∈ Y,∀i ∈ [n]
}
.

We focus on ambiguity sets constructed using p = 2 to keep the exposition simple, but our analysis
also extends to ambiguity sets with p 6= 2.

3. Ambiguity sets with the same support as P̂ERn (x) (cf. [4, 6], for instance): given radius ζn(x) ≥ 0,
set

P̂n(x) =
{
Q =

n∑
i=1

piδprojY(f̂n(x)+ε̂in) : p ∈ Pn(x; ζn(x))
}
,

where Pn(x; ζn(x)) is a generic ambiguity set for the n-dimensional vector of probabilities p. We
focus on sets Pn(x; ζn(x)) that satisfy for each x ∈ X

p ∈ Rn+ and

n∑
i=1

pi = 1, ∀p ∈ Pn(x; ζn(x)),

lim
ζ↓0

Pn(x; ζ) = Pn(x; 0) =

{(
1

n
,

1

n
, . . . ,

1

n

)}
.

(8)

The above family of ambiguity sets—that use the same support as P̂ERn (x)—result in tractable ER-
DRO formulations (7) under milder assumptions on the true problem (3) compared to Wasserstein
and sample robust optimization ambiguity sets, which go beyond the support of P̂ERn (x).

We now provide two examples of the last category of ambiguity sets. Appendix B includes a third
example based on mean-upper semideviations.

4We use µn(x) to avoid a clash with the notation ζn(x) for the radius of ambiguity sets with the same support as P̂ERn (x).
Having different notation for these two radii will prove useful in our unified analysis of the corresponding ER-DRO problems
in Section 5.
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Example 1. CVaR-based ambiguity set [38, 40]: given radius ζn(x) ∈ [0, 1), set

Pn(x; ζn(x)) :=

{
p ∈ Rn+ :

n∑
i=1

pi = 1, pi ≤
1

n(1− ζn(x))
, ∀i ∈ [n]

}
.

Observe that ζn(x) enters the ambiguity set Pn(x; ζn(x)) through the CVaR risk parameter.

Example 2. Phi-divergence-based ambiguity sets [4, 6]: Let φ : R+ → R+ be a lower semicontinuous,
convex phi-divergence function with a unique minimum at 1 and φ(1) = 0. Given radius ζn(x) ≥ 0,
define P̂n(x) using

Pn(x; ζn(x)) :=

{
p ∈ Rn+ :

n∑
i=1

pi = 1,
1

n

n∑
i=1

φ(npi) ≤ ζn(x)

}
.

Particular instances include Kullback Leibler divergence, variation distance, and Hellinger distance-based
ambiguity sets.

In the next section, we investigate the theoretical properties of using Wasserstein ambiguity sets within
the ER-DRO problem. In Section 5, we present a unified analysis of the theoretical properties of using
both sample robust optimization ambiguity sets and ambiguity sets with the same support as P̂ERn (x).
Hereafter, we often write P̂n(x; ζn(x)) instead of P̂n(x) to make its dependence on the radius ζn(x)
explicit. We also write ζn(α, x) instead of ζn(x) when we want to emphasize the dependence of the
radius on the risk level α.

4 Wasserstein-based ambiguity sets

We now establish asymptotic optimality, rates of convergence, and finite sample guarantees for ER-DRO
formulations defined using p-Wasserstein distance-based ambiguity sets with p ∈ [1,+∞). Section 5
presents analysis for ambiguity sets defined using the ∞-Wasserstein distance by exploiting a link with
sample robust optimization [10]. Sections 4.1 and 5 of [19] and Section 2.2 of [30] identify conditions
under which the resulting ER-DRO formulation (7) is computationally tractable. References [3, 25, 27]
also consider solution approaches for when problem (3) is a two-stage stochastic program.

We begin with a light-tail assumption on the distribution Pε of the errors ε.

Assumption 1. There is a constant a > p such that E [exp(‖ε‖a)] < +∞.

Next, we make a finite sample assumption on the regression estimate f̂n.

Assumption 2. The regression estimate f̂n possesses the following finite sample property: for a.e. x ∈ X
and any risk level α ∈ (0, 1), there exists a constant κp,n(α, x) > 0 such that

P
{
‖f∗(x)− f̂n(x)‖p > κpp,n(α, x)

}
≤ α, and

P
{

1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖p > κpp,n(α, x)

}
≤ α.

Appendix EC.3 of [29] identifies conditions under which parametric regression methods such as or-
dinary least squares (OLS) and Lasso regression satisfy Assumption 2 for the case p = 2 with constants
κ2

2,n(α, x) = O(n−1 log(α−1)). Similar bounds readily hold for p 6= 2, e.g., if the support X of the
covariates is compact. Nonparametric regression methods, on the other hand, typically only satisfy As-
sumption 2 with constants κpp,n(α, x) = O(n−1 log(α−1))O(1)/dx . If Assumption 2 holds for p = 2, the
power mean inequality implies that it also holds for any p ∈ [1, 2) with κp,n(α, x) = κ2,n(α, x).

We make the light-tail Assumption 1 on the distribution Pε of the errors ε to invoke the concentration
inequality in Lemma 1 for the true empirical distribution P ∗n(x). Throughout, we assume p 6= dy/2 for a
slightly simpler form of this concentration inequality; see [21, Theorem 2] for the case p = dy/2. Lemma 1
also applies to non-i.i.d. data Dn such as time series data (cf. [16]).
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Lemma 1. [Theorem 2 of [21]] Suppose Assumption 1 holds, p 6= dy/2, and the samples {εi}ni=1 are
i.i.d. Then, for all κ > 0, n ∈ N, and x ∈ X

P
{
dW,p(P

∗
n(x), PY |X=x) ≥ κ

}
≤

{
O(1) exp(−O(1)nκmax{dy/p,2}) if κ ≤ 1

O(1) exp(−O(1)nκa/p) if κ > 1
.

We require a few intermediate results before we can establish a finite sample certificate guarantee
for Wasserstein ER-DRO estimators in Theorem 5 (cf. [30, Theorem 19]). The first result bounds
the p-Wasserstein distance between the estimated empirical distribution P̂ERn (x) and the conditional
distribution PY |X=x of Y given X = x.

Lemma 2. For each x ∈ X

dW,p(P̂
ER
n (x), PY |X=x) ≤

(
1

n

n∑
i=1

‖ε̃in(x)‖
)1/p

+ dW,p(P
∗
n(x), PY |X=x).

Proof. The triangle inequality for the p-Wasserstein distance yields

dW,p(P̂
ER
n (x), PY |X=x) ≤ dW,p(P̂ERn (x), P ∗n(x)) + dW,p(P

∗
n(x), PY |X=x).

The stated result then follows from the definition of the p-Wasserstein distance and inequality (6) since

dW,p(P̂
ER
n (x), P ∗n(x)) ≤

(
1

n

n∑
i=1

‖projY(f̂n(x) + ε̂in)− (f∗(x) + εi)‖p
)1/p

≤
(

1

n

n∑
i=1

‖ε̃in(x)‖p
)1/p

.

The next result bounds the power mean deviation
(

1
n

∑n
i=1‖ε̃in(x)‖p

)1/p
.

Lemma 3. For each x ∈ X(
1

n

n∑
i=1

‖ε̃in(x)‖p
)1/p

≤ ‖f∗(x)− f̂n(x)‖+

(
1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖p
)1/p

.

Proof. We have from the definition of ε̃in(x) that(
1

n

n∑
i=1

‖ε̃in(x)‖p
)1/p

≤
(

1

n

n∑
i=1

(
‖f∗(x)− f̂n(x)‖+ ‖f∗(xi)− f̂n(xi)‖

)p)1/p

≤‖f∗(x)− f̂n(x)‖+

(
1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖p
)1/p

,

where the first step follows from the triangle inequality for the `2-norm, and the second step follows from
the triangle inequality for the `p-norm.

Finally, we derive a finite sample guarantee for
(

1
n

∑n
i=1‖ε̃in(x)‖p

)1/p
.

Lemma 4. Suppose Assumption 2 holds and α ∈ (0, 1). Then for a.e. x ∈ X

P
{(

1

n

n∑
i=1

‖ε̃in(x)‖p
)1/p

> 2κp,n

(α
4
, x
)}
≤ α

2
.

Proof. We have for a.e. x ∈ X

P
{(

1

n

n∑
i=1

‖ε̃in(x)‖p
)1/p

> 2κp,n

(α
4
, x
)}
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≤P
{
‖f∗(x)− f̂n(x)‖+

(
1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖p
)1/p

> 2κp,n

(α
4
, x
)}

≤P
{
‖f∗(x)− f̂n(x)‖ > κp,n

(α
4
, x
)}

+ P
{

1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖p > κpp,n

(α
4
, x
)}

≤α
4

+
α

4
=
α

2
,

where the first step follows by Lemma 3, the second step follows from the inequality P(V +W > c1+c2) ≤
P(V > c1) + P(W > c2) for any random variables V , W and constants c1, c2, and the last step holds by
Assumption 2.

To establish asymptotic and finite sample guarantees in Theorems 5 to 8, we need to enlarge the
radius of the Wasserstein ambiguity set that is used in the absence of covariate information [19, 30].
This enlargement accounts for the error in estimating the regression function f∗. In particular, for a
given covariate realization x ∈ X and risk level α ∈ (0, 1), we use

ζn(α, x) := κ(1)
p,n(α, x) + κ(2)

p,n(α) (9)

as the radius of the ambiguity set, where κ
(1)
p,n(α, x) := 2κp,n

(
α
4 , x

)
and

κ(2)
p,n(α) :=


(
O(1) log(O(1)α−1)

n

)min{p/dy,1/2}
if n ≥ O(1) log(O(1)α−1)(

O(1) log(O(1)α−1)
n

)p/a
if n < O(1) log(O(1)α−1)

.

The constants a and κp,n above are defined in Assumptions 1 and 2. While this choice of ζn helps us
derive our theoretical guarantees, it involves unknown constants and is typically conservative in practice
(see Remark 2). We investigate practical data-driven approaches for choosing the radius ζn in Section 6.

Theorem 5. [Finite sample certificate guarantee] Suppose Assumptions 1 and 2 hold, α ∈ (0, 1) is a
given risk level, and the samples {εi}ni=1 of the errors are i.i.d. Then, for a.e. x ∈ X , the finite sample
certificate guarantee P

{
g(ẑDROn (x);x) ≤ v̂DROn (x)

}
≥ 1 − α holds for the ER-DRO problem (7) with

radius ζn(α, x) of the ambiguity set P̂n(x; ζn(α, x)) specified by equation (9).

Proof. Lemma 4 and Lemma 1 imply that

P
{(

1

n

n∑
i=1

‖ε̃in(x)‖p
)1/p

> κ(1)
p,n(α, x)

}
≤ α

2
, for a.e. x ∈ X ,

P
{
dW,p(P

∗
n(x), PY |X=x) > κ(2)

p,n(α)
}
≤ α

2
, ∀x ∈ X .

Consequently, equation (9), Lemma 2, and the same probability inequality used in the proof of Lemma 4
imply that

P
{
dW,p(P̂

ER
n (x), PY |X=x) > ζn(α, x)

}
≤ α for a.e. x ∈ X .

The stated result follows from the definition of the ER-DRO problem (7).

We now make the following assumption along the lines of [19, 25, 30] to show in Theorem 6 that
solutions to the ER-DRO problem (7) with radii ζn(αn, x) are asymptotically optimal for a suitable
sequence of risk levels {αn}.

Assumption 3. The function c(·, Y ) is lower semicontinuous on Z for each Y ∈ Y and the function c(z, ·)
is continuous on Y for each z ∈ Z. Furthermore, there exists a constant Bc,p ≥ 0 such that

|c(z, Y )| ≤ Bc,p(1 + ‖Y ‖p), ∀z ∈ Z, Y ∈ Y.

We also make either of the following assumptions on the function c to establish a rate of convergence
of the ER-DRO estimator in Theorem 7.

9



Assumption 4. For each z ∈ Z, the function c(z, ·) is Lipschitz continuous on Y with Lipschitz con-
stant L1(z).

Assumption 5. The Wasserstein order is p ≥ 2. Furthermore, for each z ∈ Z, the function c(z, ·) is
differentiable on Y with E

[
‖∇c(z, Y )‖2

]
< +∞ and

‖∇c(z, ȳ)−∇c(z, y)‖ ≤ L2(z)‖ȳ − y‖, ∀y, ȳ ∈ Y.

Assumptions 3, 4, and 5 hold for broad classes of stochastic programs, including two-stage stochas-
tic mixed-integer linear programs (MIPs) with continuous recourse [29, Appendix EC.2]. With these
assumptions in place, we obtain the following asymptotic results.

Theorem 6. [Consistency and asymptotic optimality] Suppose Assumptions 1, 2, and 3 hold, the samples
{εi}ni=1 are i.i.d., there is a sequence of risk levels {αn}n∈N ⊂ (0, 1) such that

∑
n αn < +∞, and

limn→∞ ζn(αn, x) = 0 for a.e. x ∈ X with the radius ζn defined in equation (9). Then, for a.e. x ∈ X ,
the optimal value and solution of the ER-DRO problem (7) with ambiguity set P̂n(x; ζn(αn, x)) are
consistent and asymptotically optimal, i.e.,

v̂DROn (x)
p−→ v∗(x), dist(ẑDROn (x), S∗(x))

p−→ 0, g(ẑDROn (x);x)
p−→ v∗(x).

Theorem 7. [Rate of convergence] Suppose the assumptions of Theorem 6 and either Assumption 4 or
Assumption 5 hold. Then, for a.e. x ∈ X , the optimal value and solution of the ER-DRO problem (7)
with ambiguity set P̂n(x; ζn(αn, x)) satisfy∣∣v̂DROn (x)− v∗(x)

∣∣ = Op
(
ζn(αn, x)

)
,
∣∣g(ẑDROn (x);x)− v∗(x)

∣∣ = Op
(
ζn(αn, x)

)
.

The proofs of Theorems 6 and 7 are in Appendices A.1 and A.2. The proof of Theorem 6 mirrors
the proof of [19, Theorem 3.6]. The proof of Theorem 6 shows that its conclusions in fact hold with the
stronger notion of almost sure convergence. Similar to the setting without covariate information [19], we
can typically choose the sequence of risk levels {αn} in Theorems 6 and 7 to be any summable sequence
that converges to zero more slowly than the sequence {exp(−n)} when the errors ε are sub-Gaussian
(see the discussion following Assumption 2).

Remark 1. Assumption 5 can be weakened to consider functions c that satisfy

‖∇c(z, ȳ)−∇c(z, y)‖ ≤ L2(z, y)‖ȳ − y‖κ, ∀z ∈ Z, y, ȳ ∈ Y,

and E
[
‖L2(z, Y )‖p/(p−1)

]
< +∞, ∀z ∈ Z, for some constant κ ∈ (0, 1] and orders p ≥ 1 + κ, see [24,

Proposition 1]. Furthermore, Assumption 5 can also be weakened to consider functions c of the form
c(z, Y ) = maxj∈[Nc] cj(z, Y ), where Nc ∈ N and for each z ∈ Z, the constituent functions cj(z, ·) are

differentiable on Y and satisfy E
[
maxj∈[Nc]‖∇cj(z, Y )‖2

]
< +∞ and

‖∇cj(z, ȳ)−∇cj(z, y)‖ ≤ Lj,2(z)‖ȳ − y‖, ∀y, ȳ ∈ Y, j ∈ [Nc].

The above weakening of Assumption 5 makes it applicable to a larger class of stochastic programs. We
stick with Assumption 5 for simplicity.

Remark 2. Recall the radius given in (9) consists of two parts. For the part that relates to the Wasser-
stein ambiguity set without covariate information, because the rate dW,p(P

∗
n(x), PY |X=x) = Op(n

−p/dy )

cannot be improved in general (see [30, Example 3]), we usually have κ
(2)
p,n(αn) converging to zero only

at the slow rate Θ(n−p/dy ). Therefore, the convergence rate afforded by Theorem 7 suffers from the
curse of dimensionality even when we use parametric regression methods, which typically exhibit bet-
ter rates of convergence on the part of the radius that relates to the estimation of f∗ (cf. [29, The-
orem 2]). The analysis in Gao [23] implies that, under certain assumptions, using the larger radius

ζn(α, x) := max{κ(1)
p,n(α, x), κ̄

(2)
p,n(α)} with suitably chosen κ̄

(2)
p,n(α) = O(n−1/2) results in estimators with

a finite sample certificate-type guarantee (cf. [15]). This larger choice of the radius ζn also yields estima-
tors with the conventional Op(n

−1/2) rate of convergence when we use parametric regression methods to
estimate the function f∗.
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We now identify conditions under which the ER-DRO estimators possess a finite sample solution
guarantee. In order to achieve this, we first refine Assumption 2 to a more convenient, stronger form in
Assumption 6.

Assumption 6. The regression estimate f̂n possesses the following large deviation properties: for any
constant κ > 0, there exist positive constants Kp,f (κ, x), K̄p,f (κ), βp,f (κ, x), and β̄p,f (κ) satisfying

P
{
‖f∗(x)− f̂n(x)‖p > κp

}
≤ Kp,f (κ, x) exp (−nβp,f (κ, x)) , for a.e. x ∈ X ,

P
{

1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖p > κp
}
≤ K̄p,f (κ) exp

(
−nβ̄p,f (κ)

)
.

Appendix EC.3 of [29] verifies Assumption 6 for some popular regression setups for p = 2; see the
discussion after Assumption 2 for cases when p 6= 2.

Theorem 8. [Finite sample solution guarantee] Suppose Assumptions 1, 2, 3, and 6 hold, the samples
{εi}ni=1 are i.i.d., and either Assumption 4 or Assumption 5 holds. Then, for a.e. x ∈ X and any η > 0,
there exist positive constants Γ(η, x) and γ(η, x) and a radius ζn(η, x) > 0, determined using a suitable
value of the risk level in equation (9), such that the solution of the ER-DRO problem (7) with ambiguity
set P̂n(x; ζn(η, x)) satisfies

P
{

dist(ẑDROn (x), S∗(x)) ≥ η
}
≤ Γ(η, x) exp(−nγ(η, x)).

Proof. We first show that for any κ > 0, there exist constants Γ̃(κ, x) > 0 and γ̃(κ, x) > 0 such that

P
{
g(ẑDROn (x);x) > v∗(x) + κ

}
≤ Γ̃(κ, x) exp(−nγ̃(κ, x)) (10)

for a suitable choice of the risk level α. Consider any κ > 0. First, note that Theorem 5 implies
g(ẑDROn (x);x) ≤ v̂DROn (x) with probability at least 1− α when the radius ζn(α, x) is chosen according
to equation (9). This together with the inequality P {V +W > 0} ≤ P {V > 0} + P {W > 0} with
V = g(ẑDROn (x);x)− v̂DROn (x) and W = v̂DROn (x)− v∗(x)− κ yields

P
{
g(ẑDROn (x);x) > v∗(x) + κ

}
≤ α+ P

{
v̂DROn (x) > v∗(x) + κ

}
.

Suppose Assumption 4 holds. Following similar arguments as in the derivation of inequality (16) in
Appendix A.2, we have for any z∗(x) ∈ S∗(x) that

P
{
v̂DROn (x) > v∗(x) + 2L1(z∗(x))ζn(α, x)

}
≤ α.

Therefore, if we choose α ∈ (0, 1) so that 2L1(z∗(x))ζn(α, x) ≤ κ, we have

P
{
g(ẑDROn (x);x) > v∗(x) + κ

}
≤ 2α.

Equation (9) implies that 2L1(z∗(x))κ
(2)
p,n(α) ≤ κ/2 whenever the risk level α ≥ O(1) exp

(
−O(1)n

(
κ

4L1(z∗(x))

)1/θ)
with θ equal to min{p/dy, 1/2} or p/a. Assumption 6 implies that we can choose the constant κ

(1)
p,n(α, x)

in equation (9) such that for a.e. x ∈ X , 2L1(z∗(x))κ
(1)
p,n(α, x) ≤ κ/2 whenever

α ≥ 4 max
{
Kp,f

(
κ

8L1(z∗(x)) , x
)

exp
(
−nβp,f

(
κ

8L1(z∗(x)) , x
))
,

K̄p,f

(
κ

8L1(z∗(x))

)
exp
(
−nβ̄p,f

(
κ

8L1(z∗(x))

))}
.

The above bounds yield a risk level α such that 2L1(z∗(x))ζn(α, x) ≤ κ holds, which in turn implies
inequality (10) holds for suitably defined constants.

Next, suppose instead that Assumption 5 holds. Following similar arguments as in the derivation of
inequality (17) in Appendix A.2, we have for any z∗(x) ∈ S∗(x) that

P
{
v̂DROn (x) > v∗(x) +O(1)ζn(α, x) + 4L2(z∗(x))ζ2

n(α, x)
}
≤ α.

Therefore, if we pick the risk level α ∈ (0, 1) so that O(1)ζn(α, x) + 4L2(z∗(x))ζ2
n(α, x) ≤ κ, then

P
{
g(ẑDROn (x);x) > v∗(x) + κ

}
≤ 2α. Similar to the analysis above, inequality (10) can be obtained
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by bounding the smallest value of α using Assumption 6 and equation (9) so that O(1)ζn(αn, x) +
4L2(z∗(x))ζ2

n(αn, x) ≤ κ.
We now argue that inequality (10) implies the stated result. Suppose for some η > 0, x ∈ X , and some

sample path, we have dist(ẑDROn (x), S∗(x)) ≥ η. Since g(·;x) is lower semicontinuous on the compact
set Z for a.e. x ∈ X , [29, Lemma 3] implies g(ẑDROn (x);x) > v∗(x)+κ(η, x) for some constant κ(η, x) > 0
on that path (except for some paths of measure zero). We now bound the probability of this event. The
above arguments imply for a.e. x ∈ X

P
{

dist(ẑDROn (x), S∗(x)) ≥ η
}
≤ P

{
g(ẑDROn (x);x) > v∗(x) + κ(η, x)

}
≤ Γ̃(κ(η, x), x) exp(−nγ̃(κ(η, x), x)).

Theorem 8 is similar to the finite sample guarantee in [29, Theorem 3] for solutions to the ER-SAA
problem. However, unlike [29, Theorem 3], the dependence of the convergence rate on the parameter
η afforded by Theorem 8 typically suffers from the curse of dimensionality even if we use parametric
regression methods to estimate f∗ (cf. Remark 2).

5 Sample robust optimization-based ambiguity sets and ambi-
guity sets with the same support as P̂ER

n (x)

In this section we present a unified analysis of using two forms of ambiguity sets within problem (7):
sample robust optimization-based ambiguity sets and ambiguity sets with the same support as P̂ERn (x).
Specifically, we consider ambiguity sets of the form

P̂n(x) :=

{
Q =

n∑
i=1

piδȳi : p ∈ Pn(x; ζn(x)), ȳi ∈ Ŷin(x;µn(x)),∀i ∈ [n]

}
,

Ŷin(x;µn(x)) :=
{
y ∈ Y : ‖y − projY(f̂n(x) + ε̂in)‖ ≤ µn(x)

}
,∀i ∈ [n],

where µn(x) and ζn(x) are nonnegative radii and the ambiguity set Pn(x; ζn(x)) for the probabilities p
satisfies (8). This family of ambiguity sets generalizes both sample robust optimization-based ambiguity
sets constructed using the `2-norm (obtained by setting ζn(x) = 0) and ambiguity sets with the same
support as P̂ERn (x) (obtained by setting µn(x) = 0). We establish asymptotic optimality, rates of
convergence, and finite sample-type guarantees for the corresponding ER-DRO estimators (7).

When µn(x) = 0 and problem (3) is a tractable convex program, the resulting ER-DRO problem (7)
remains tractable and convex for many choices of the ambiguity set Pn(x; ζn(x)) such as Examples 1
and 2 (see, e.g., [6]). On the other hand, when µn(x) > 0 and problem (3) is a two-stage stochastic linear
program, then the ER-DRO problem (7) exhibits a min - max - min structure whose solution is in general
NP-hard. References [11, 44] investigate approaches for approximately solving the ER-DRO problem (7)
when the true problem (3) is a two-stage stochastic LP and ζn(x) = 0.

To facilitate our analysis, denote by ĝERs,n and g∗s,n the functions

ĝERs,n (z;x) := sup
p∈Pn(x;ζn(x))

n∑
i=1

pi sup
y∈Ŷi

n(x;µn(x))

c(z, y),

g∗s,n(z;x) := sup
p∈Pn(x;ζn(x))

n∑
i=1

pic(z, f
∗(x) + εi).

Note that the function ĝERs,n is equivalent to the objective function of the ER-DRO problem (7) with the

above definition of the ambiguity set P̂n(x). Additionally, g∗s,n is equivalent to the objective function of
the FI-SAA problem (4) when ζn(x) = 0 and condition (8) holds.

We begin by investigating conditions under which the optimal value and set of optimal solutions
to the ER-DRO problem (7) converge in probability to the true problem (3). We make the following
assumptions in this regard.

Assumption 7. For each z ∈ Z, the function c(z, ·) is Lipschitz continuous on Y with Lipschitz constant
L(z) satisfying supz∈Z L(z) < +∞.
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Assumption 8. For a.e. x ∈ X , the sequence of FI-SAA objectives {g∗n(·;x)} converges in probability
to the function g(·;x) uniformly on the set Z.

Assumption 9. The regression estimate f̂n has the consistency properties

f̂n(x)
p−→ f∗(x), for a.e. x ∈ X , and

1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖2 p−→ 0.

Assumption 7 is a uniform Lipschitz continuity assumption that strengthens Assumption 4. Ap-
pendix EC.2 of [29] verifies that Assumption 7 holds for two-stage stochastic MIPs with continuous
recourse. Assumption 8 is a uniform weak LLN assumption, whereas Assumption 9 is a mild consistency
assumption that holds for many popular regression setups (cf. Assumptions 3 and 4 of [29]). Assump-
tion 9 is weaker than the finite sample Assumption 2. We require the following additional assumptions
for ambiguity sets with ζn(x) > 0.

Assumption 10. The radius ζn(x) of the ambiguity set is chosen such that

sup
p∈Pn(x;ζn(x))

n∑
i=1

(
pi −

1

n

)2

= O(n−ρ), for a.e. x ∈ X ,

for some constant ρ > 1.

Assumption 11. The following weak uniform LLN holds for a.e. x ∈ X :

sup
z∈Z

∣∣∣ 1
n

n∑
i=1

(
c(z, f∗(x) + εi)

)2 − E
[(
c(z, f∗(x) + ε)

)2]∣∣∣ p−→ 0,

with supz∈Z E
[(
c(z, f∗(x) + ε)

)2]
< +∞ for a.e. x ∈ X .

Assumption 10 requires us to choose the radius ζn(x) so that the ambiguity set Pn(x; ζn(x)) converges
to the singleton

{(
1
n , . . . ,

1
n

)}
at a fast enough rate. This is always possible since we assume equation (8)

holds. We are interested in cases when Assumption 10 holds with ρ ∈ (1, 2] (see Theorem 11). Appendix B
investigates conditions when such a convergence rate holds. Theorem 7.48 of [40] presents conditions
under which both Assumptions 8 and 11 hold when the samples {εi}ni=1 are i.i.d. Note that Assumption 11
can also be equivalently stated as a weak uniform LLN assumption on the sample variance of the sequence
{c(z, f∗(x) + εi)}ni=1 when the samples {εi}ni=1 are i.i.d. [17].

Our first result identifies conditions under which the sequence of objective functions {ĝERs,n (·;x)} of
the ER-DRO problem (7) converges uniformly to the objective function g(·;x) of the true problem (3)
on Z. Theorem 9 of [17] presents an analogous result for a class of phi-divergence-based ambiguity sets
in the absence of covariate information.

Proposition 9. Suppose Assumptions 7 to 11 hold and the radius µn(x) satisfies limn→∞ µn(x) = 0
for a.e. x ∈ X . Then, for a.e. x ∈ X , the sequence of objectives {ĝERs,n (·;x)} of the ER-DRO problem (7)
converges in probability to the objective g(·; z) of the true problem (3) uniformly on the set Z.

Proof. We wish to show sup
z∈Z

∣∣ĝERs,n (z;x)− g(z;x)
∣∣ p−→ 0 for a.e. x ∈ X . By first adding and subtracting

g∗n(z;x), defined in problem (4), and then doing the same with g∗s,n(z;x), we obtain

sup
z∈Z

∣∣ĝERs,n (z;x)− g(z;x)
∣∣

≤ sup
z∈Z

sup
p∈Pn(x;ζn(x))

n∑
i=1

pi

∣∣∣∣ sup
y∈Ŷi

n(x;µn(x))

c(z, y)− c
(
z, f∗(x) + εi

) ∣∣∣∣+
sup
z∈Z

∣∣g∗s,n(z;x)− g∗n(z;x)
∣∣+ sup

z∈Z
|g∗n(z;x)− g(z;x)|. (11)

The third term on the r.h.s. of (11) vanishes in the limit in probability under Assumption 8. We
show that the first two terms also converge to zero in probability; the stated result then follows from
op(1) + op(1) = op(1).
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Consider the first term on the r.h.s. of (11). We have for a.e. x ∈ X

sup
z∈Z

sup
p∈Pn(x;ζn(x))

n∑
i=1

pi

∣∣∣ sup
y∈Ŷi

n(x;µn(x))

c(z, y)− c
(
z, f∗(x) + εi

) ∣∣∣
≤ sup
z∈Z

sup
p∈Pn(x;ζn(x))

n∑
i=1

pi sup
y∈Ŷi

n(x;µn(x))

L(z)‖y − (f∗(x) + εi)‖

≤ sup
z∈Z

sup
p∈Pn(x;ζn(x))

n∑
i=1

piL(z)
(
µn(x) + ‖ε̃in(x)‖

)
= sup
z∈Z

L(z) sup
p∈Pn(x;ζn(x))

n∑
i=1

pi
(
µn(x) + ‖ε̃in(x)‖

)
≤ sup
z∈Z

L(z)

(
µn(x) +

(
1

n

n∑
i=1

(
‖ε̃in(x)‖

)2) 1
2
)

sup
p∈Pn(x;ζn(x))

(
n

n∑
i=1

p2
i

) 1
2

= sup
z∈Z

L(z)

(
µn(x) +

(
1

n

n∑
i=1

(
‖ε̃in(x)‖

)2) 1
2
)

sup
p∈Pn(x;ζn(x))

(
1 + n

n∑
i=1

(
pi −

1

n

)2
) 1

2

=O(1)op(1)O(1) = op(1), (12)

where the first step follows from Assumption 7, the second step follows from the definition of the
set Ŷin(x;µn(x)), the triangle inequality, and inequality (6), the fourth step follows by applying the
Cauchy-Schwarz inequality twice, and the sixth step follows from Assumptions 7, 9 and 10, limn→∞ µn(x) =
0, and [29, Lemma 1].

Next, consider the second term on the r.h.s. of (11). We have for a.e. x ∈ X

sup
z∈Z
|g∗s,n(z;x)− g∗n(z;x)|

= sup
z∈Z

∣∣∣ sup
p∈Pn(x;ζn(x))

n∑
i=1

pic(z, f
∗(x) + εi)− 1

n

n∑
i=1

c(z, f∗(x) + εi)
∣∣∣

= sup
z∈Z

∣∣∣ sup
p∈Pn(x;ζn(x))

n∑
i=1

(
pi −

1

n

)
c(z, f∗(x) + εi)

∣∣∣
≤ sup
p∈Pn(x;ζn(x))

(
n

n∑
i=1

(
pi −

1

n

)2
) 1

2

sup
z∈Z

(
1

n

n∑
i=1

(
c(z, f∗(x) + εi)

)2) 1
2

= o(1)Op(1) = op(1), (13)

where the inequality follows by Cauchy-Schwarz, and the last line follows from Assumptions 10 and 11.

It can be seen from the proof that Assumptions 10 and 11 are not required for sample robust
optimization-based DRO, i.e., when the radius ζn(x) ≡ 0.

Remark 3. Assumption 7 can be weakened to a local Lipschitz continuity assumption under stronger
assumptions on the regression setup. In particular, when ζn(x) ≡ 0, the conclusion of Proposition 9 holds
if we replace Assumption 7 with [29, Assumption 2]. When ζn(x) 6= 0, we need to replace Assumption 7
with strengthened versions of Assumption 9 and [29, Assumption 2] involving fourth degree terms.

Proposition 9 provides the foundation for showing that the ER-DRO estimators are asymptotically
optimal. We omit the proof of Theorem 10 since it is identical to the proof of [29, Theorem 1] in light
of Proposition 9.

Theorem 10. [Consistency and asymptotic optimality] Suppose the assumptions of Proposition 9 hold.
Then, for a.e. x ∈ X

v̂DROn (x)
p−→ v∗(x), D

(
ŜDROn (x), S∗(x)

)
p−→ 0, sup

z∈ŜDRO
n (x)

g(z;x)
p−→ v∗(x).

14



Next, we investigate the rate of convergence of the optimal value of the ER-DRO problem (7) to that
of the true problem (3). To enable this, we require the following rate of convergence assumptions on the

FI-SAA problem (3) and the regression estimate f̂n (cf. Assumptions 5 and 6 of [29]).

Assumption 12. The function c in problem (3) and the data Dn satisfy the following functional central
limit theorem for the FI-SAA objective:

√
n (g∗n(·;x)− g(·;x))

d−→ V (·;x), for a.e. x ∈ X ,

where g∗n(·;x), g(·;x), and V (·;x) are (random) elements of L∞(Z).

Assumption 13. There is a constant5 0 < r ≤ 1 such that the regression estimate f̂n satisfies the
following convergence rate criteria for a.e. x ∈ X :

‖f∗(x)− f̂n(x)‖2 = Op(n
−r),

1

n

n∑
i=1

‖f∗(xi)− f̂n(xi)‖2 = Op(n
−r).

Assumption 13 strengthens Assumption 9. It typically holds with r = 1 for parametric regression
methods such as OLS and Lasso regression under mild assumptions. On the other hand, nonparametric
regression methods such as kernel regression and random forests usually satisfy Assumption 13 only with
r = O(1)/dx due to the curse of dimensionality.

Our next result establishes a convergence rate for the ER-DRO problem (7).

Theorem 11. [Rate of convergence] Suppose Assumptions 7, 11, 12, and 13 hold. In addition, suppose
Assumption 10 holds with ρ = 1 + r and the radius µn(x) satisfies µn(x) = O(n−r/2) for a.e. x ∈ X ,
where the constant r is defined in Assumption 13. Then, for a.e. x ∈ X , the solution of the ER-DRO
problem (7) satisfies∣∣v̂DROn (x)− v∗(x)

∣∣ = Op(n
−r/2),

∣∣g(ẑDROn (x);x)− v∗(x)
∣∣ = Op(n

−r/2).

Proof. Assumptions 7, 10, and 13, µn = O(n−r/2), and the inequality chain (12) imply that the first
term on the r.h.s. of inequality (11) satisfies

sup
z∈Z

∣∣ĝERs,n (z;x)− g∗s,n(z;x)
∣∣ = Op(n

−r/2).

Assumptions 10 and 11 and the inequality chain (13) imply that the second term on the r.h.s. of inequal-
ity (11) satisfies

sup
z∈Z

∣∣g∗s,n(z;x)− g∗n(z;x)
∣∣ = Op(n

−r/2).

Finally, Assumption 12 implies
√
n supz∈Z |g∗n(z;x)− g(z;x)| = Op(1) for a.e. x ∈ X , which in turn

implies supz∈Z |g∗n(z;x)− g(z;x)| = Op(n
−1/2). Putting the above three inequalities together into in-

equality (11), we obtain

sup
z∈Z

∣∣ĝERs,n (z;x)− g(z;x)
∣∣ = Op(n

−r/2), for a.e. x ∈ X .

This implies that for a.e. x ∈ X and any α > 0, there exists Mα > 0 such that

P
{

sup
z∈Z

∣∣ĝERs,n (z;x)− g(z;x)
∣∣ > Mαn

−r/2
}
< α.

Consequently, we have for a.e. x ∈ X

P
{
v̂DROn (x) > v∗(x) +Mαn

− r
2

}
≤ P

{
ĝERs,n (z∗(x);x) > v∗(x) +Mαn

− r
2

}
≤ P

{∣∣ĝERs,n (z∗(x);x)− v∗(x)
∣∣ > Mαn

− r
2

}
,

P
{
v∗(x) > v̂DROn (x) +Mαn

− r
2

}
≤ P

{
g(ẑDROn (x);x) > v̂DROn (x) +Mαn

− r
2

}
≤ P

{∣∣v̂DROn (x)− g(ẑDROn (x);x)
∣∣ > Mαn

− r
2

}
.

Therefore, both |v̂DROn (x)− v∗(x)| and
∣∣g(ẑDROn (x);x)− v∗(x)

∣∣ are Op(n
−r/2).

5The constant r is independent of n, but could depend on the covariate dimension dx.
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Finally, we make the following assumptions to establish a finite sample certificate-type guarantee for
sample robust optimization-based ER-DRO, i.e., when the radius ζn(x) ≡ 0. To achieve this, we utilize
a connection between sample robust optimization-based ambiguity sets and ambiguity sets defined using
the∞-Wasserstein distance. In particular, Theorem 5 of [10] implies that the sample robust optimization-
based ER-DRO problem is equivalent to the ∞-Wasserstein distance-based ER-DRO problem (7) with
ambiguity set P̂n(x) :=

{
Q ∈ P(Y) : dW,∞(Q, P̂ERn (x)) ≤ µn(x)

}
.

Assumption 14. The regression estimate f̂n possesses the following finite sample property: for any risk
level α ∈ (0, 1), there exists a positive constant κn(α) such that P

{
supx∈X ‖f∗(x)− f̂n(x)‖ > κn(α)

}
≤ α.

Assumption 15. For a.e. x ∈ X , the conditional distribution PY |X=x has a density ΛY (·;x) : Ȳ →
[0,+∞), where Ȳ ⊂ Y is an open, connected and bounded set with a Lipschitz boundary. Furthermore,
for each y ∈ Ȳ and a.e. x ∈ X , the density satisfies 1/λ(x) ≤ ΛY (y;x) ≤ λ(x), for some λ(x) ≥ 1.

Assumption 14 strengthens Assumption 2. Appendix EC.3 of [29] verifies that Assumption 14 holds
for some parametric and nonparametric regression methods such as OLS, Lasso, and kNN regression
when the support X of the covariates is compact. Trillos and Slepčev [41] consider cases when Assump-
tion 15 holds. This assumption yields the following concentration of measure result for the true empirical
distribution P ∗n(x). Note that Lemma 12 also applies to settings with non-i.i.d. data Dn such as time
series data.

Lemma 12. [Theorem 1.1 of [41]] Suppose Assumption 15 holds and the samples {εi}ni=1 are i.i.d. Then,
for any constant β > 2 and a.e. x ∈ X

P
{
dW,∞(P ∗n(x), PY |X=x) ≥ O(1)

log(n)

n1/dy

}
≤ O(n−β/2),

where the O(1) term depends only on β, Ȳ, and λ(x) in Assumption 15.

The next result is the analogue of Lemma 2 for the ∞-Wasserstein distance.

Lemma 13. For each x ∈ X

dW,∞(P̂ERn (x), PY |X=x) ≤ 2 sup
x∈X
‖f∗(x)− f̂n(x)‖+ dW,∞(P ∗n(x), PY |X=x).

Proof. The triangle inequality for the ∞-Wasserstein distance yields

dW,∞(P̂ERn (x), PY |X=x) ≤ dW,∞(P̂ERn (x), P ∗n(x)) + dW,∞(P ∗n(x), PY |X=x).

The result then follows from (6) and the definition of dW,∞, which yield

dW,∞(P̂ERn (x), P ∗n(x)) ≤ sup
i∈[n]

‖projY(f̂n(x) + ε̂in)− (f∗(x) + εi)‖

≤ sup
i∈[n]

‖(f̂n(x) + ε̂in)− (f∗(x) + εi)‖

≤ 2 sup
x∈X
‖f∗(x)− f̂n(x)‖.

For a given realization x ∈ X and risk level α ∈ (0, 1), we hereafter use

ζn(α, x) := 0, µn(α, x) := κ(1)
∞,n(α) + κ(2)

∞,n(x) (14)

as the radii for the sample robust optimization-based ambiguity set, where

κ(1)
∞,n(α) := 2κn(α), κ(2)

∞,n(x) := O(1)n−θ/dy ,

the constant κn is defined in Assumption 14 and the constant θ < 1. Similar to the specification of
the Wasserstein DRO radius in (9), the sample robust optimization radius µn equals the sum of two
contributions—the first accounts for the error in estimating f∗, and the second corresponds to the
radius used in the absence of covariate information [11]. While the above choice of µn helps us derive
our theoretical guarantees, it involves unknown constants and is typically conservative in practice (cf.
Remark 2). We investigate practical approaches for choosing the radius µn in Section 6.
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Theorem 14. [Finite sample certificate-type guarantee] Suppose Assumptions 14 and 15 hold, the
samples {εi}ni=1 are i.i.d., there exists a sequence of risk levels {αn}n∈N ⊂ (0, 1) such that

∑
n αn < +∞,

and for a.e. x ∈ X , limn→∞ µn(αn, x) = 0 with µn defined in equation (14). Then, for a.e. x ∈ X , there
exists N(x) ∈ N such that the solution of the ER-DRO problem (7) with radii ζn(αn, x) and µn(αn, x)
specified by equation (14) a.s. satisfies

g(ẑDROn (x);x) ≤ v̂DROn (x), ∀n ≥ N(x).

Proof. Our proof follows the outline of the proof of [11, Theorem 1].
Lemma 13, the probability inequality used in the proof of Lemma 4, and Assumption 14 yield for a.e.

x ∈ X

P
{
dW,∞(P̂ERn (x), PY |X=x) > µn(αn, x)

}
≤ αn + P

{
dW,∞(P ∗n(x), PY |X=x) > κ(2)

∞,n(x)
}
.

Consider β = 4 in Lemma 12. Because κ
(2)
∞,n(x) ≥ O(1) log(n)/n1/dy for n large enough, we have from

Lemma 12 that for a.e. x ∈ X and n large enough

P
{
dW,∞(P̂ERn (x), PY |X=x) > µn(αn, x)

}
≤ αn +O(n−2).

Therefore, we have
∑∞
n=1 P

{
dW,∞(P̂ERn (x), PY |X=x) > µn(αn, x)

}
< +∞. The Borel-Cantelli lemma

then implies that for a.e. x ∈ X , there a.s. existsN(x) ∈ N such that for n ≥ N(x), dW,∞(P̂ERn (x), PY |X=x) ≤
µn(αn, x).

Recall that our sample robust optimization-based ER-DRO problem is equivalent to the∞-Wasserstein
distance-based ER-DRO problem with ambiguity set P̂n(x) :=

{
Q ∈ P(Y) : dW,∞(Q, P̂ERn (x)) ≤

µn(αn, x)
}

[10, Theorem 5]. The stated result then follows by the definition of the ∞-Wasserstein
distance-based ER-DRO problem (7).

Hereafter, we revert to the shortened notation ζn(x) and also use it to denote the radius of sample
robust optimization ambiguity sets for simplicity.

6 Specifying the radius of the ambiguity set

Determining the optimal radius ζn(x) of the ambiguity sets in Section 3 using the theory in Sections 4
and 5 is hard for two reasons: (i) the theory usually involves unknown constants, and (ii) even if these
constants are known or estimated, this specification of ζn(x) is typically conservative in practice (see
Remark 2). Therefore, we propose data-driven approaches that use cross-validation (CV) to specify ζn(x)
for the ER-DRO problem (7) with the goal of minimizing the out-of-sample cost g(ẑDROn (x);x) of the
resulting ER-DRO solution ẑDROn (x). Once we choose ζn(x), we re-solve the ER-DRO problem (7) with
the ambiguity set of radius ζn(x) centered at the empirical distribution P̂ERn (x) to determine the optimal
value v̂DROn (x) and a solution ẑDROn (x).

We outline two approaches, Algorithms 1 and 2, for choosing the radius ζn(x) independently of the
covariate realization x ∈ X . Algorithm 1 ignores covariate information altogether, whereas Algorithm 2
uses all of the data Dn, including covariates, but does not use the new covariate realization x ∈ X for
specifying the radius. Algorithm 3 in Appendix C presents an alternative that also uses the realization x ∈
X to choose ζn(x). Algorithms 1 and 2 are less data and computation intensive and can be readily used
in applications where the DRO problem (7) is repeatedly solved for different covariate realizations.
Allowing ζn(x) to depend on the realization x ∈ X , on the other hand, could yield estimators with better
out-of-sample performance, which might justify the added computational cost of Algorithm 3.

Algorithm 1 chooses a covariate-independent radius ζn for the ambiguity set P̂n(x) usingK-fold CV on
a DRO extension of a naive SAA problem that does not use covariate information (cf. [19, Section 7.2.2]).
This algorithm does not require estimation of the regression function f∗. The parameter ζn determined
using Algorithm 1 necessarily converges to zero as the sample size n is increased. This may result
in suboptimal estimators ẑDROn (x) when the prediction model is misspecified, in which case it may be
beneficial to use a positive value of ζn even for large values of n (cf. Figure 6 in Appendix C). Algorithm 2
determines a covariate-independent radius ζn using K-fold CV on ER-DRO problems. Note that the
objective in line 12 of Algorithm 2 for choosing the radius ζn is similar to the objective in line 8 of
Algorithm 1.
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Algorithm 1 Specifying a covariate-independent radius ζn using a naive SAA-based DRO problem

1: Input: data Dn, set of candidate radii ∆, and number of folds K.
2: Partition [n] into K subsets S1, . . . , SK of (roughly) equal size at random.
3: for k = 1, . . . ,K do
4: for ζ ∈ ∆ do
5: Solve the following DRO problem to get a solution ẑDRO−k (ζ):

min
z∈Z

sup
Q∈P̂−k

EY∼Q [c(z, Y )] ,

where the ambigiuity set P̂−k with radius ζ is centered at the empirical

distribution P̃−k :=
1

n− |Sk|
∑

i∈[n]\Sk

δyi .

6: end for
7: end for

8: Output: Radius ζn ∈ arg min
ζ∈∆

1

K

∑
k∈[K]

1

|Sk|
∑
i∈Sk

c(ẑDRO−k (ζ), yi) of the ambiguity set P̂n(x) for the ER-DRO

problem (7).

7 Computational experiments

We consider instances of the following mean-risk portfolio optimization model adapted from [19]:

min
z∈Z

E
[
−Y Tz

]
+ ρ CVaRβ(−Y Tz),

where Z :=
{
z ∈ Rdz+ :

∑
j zj = 1

}
, ρ and β are given parameters, and

CVaRβ(−Y Tz) := min
τ∈R

E
[
τ +

1

1− β
max{0,−Y Tz − τ}

]
.

For each j ∈ [dz], the decision variable zj denotes the fraction of capital invested in asset j and the
random variable Yj denotes the net return of asset j. The parameters ρ ≥ 0 and β ∈ (0, 1) specify the
decision-maker’s risk aversion level, with CVaRβ (roughly) averaging over the 100(1− β)% worst return
outcomes under the distribution of Y . Following [19], we use β = 0.8, ρ = 10, and dy = dz = 10.

Similar to [29], we assume that the returns Y satisfy

Yj = ν∗j +
∑
l∈L∗

µ∗jl(Xl)
θ + ε̄j + ω, ∀j ∈ [dy],

where Xl, l ∈ L are covariates, θ ∈ {0.5, 1, 2} is a fixed parameter that determines the model class,
ε̄j ∼ N (0, 0.02j) and ω ∼ N (0, 0.02) are additive errors, ν∗ and µ∗ are model parameters, and L∗ ⊆ L
contains the indices of the covariates with predictive power (note that L∗ does not depend on the
index j ∈ [dy]). Throughout, we assume that |L∗| = 3, i.e., the returns truly depend only on three
covariates. We simulate i.i.d. data Dn with

ν∗j = 0.01j, µ∗j1 = 0.025j + ξj1, µ∗j2 = 0.015j + ξj2, µ∗j3 = 0.01j + ξj3,

for each j ∈ [dy], where ξj1, ξj2, and ξj3 are i.i.d. samples from the uniform distribution U(−0.005j, 0.005j).
We draw covariate samples {xi}ni=1 from a multivariate folded-normal/half-normal distribution with the
underlying normal distribution having zero mean and covariance matrix equal to a random correlation
matrix generated using the vine method of [33].

Given joint data Dn on the random returns and random covariates, we estimate the coefficients of
the linear model

Yj = νj +
∑
l∈L

µjlXl + ηj , ∀j ∈ [dy],

where ηj are zero-mean errors, using OLS or Lasso regression and use this prediction model within our
residuals-based formulations. We use this linear prediction model even when the degree θ 6= 1, in which
case it is misspecified. Note that OLS regression estimates dx + 1 parameters for each j ∈ [dy].
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Algorithm 2 Specifying a covariate-independent radius ζn using the ER-DRO problem

1: Input: data Dn, set of candidate radii ∆, number of folds K, and number of covariate realizations sampled
during each fold T ≤ b n

K
c.

2: Partition [n] into subsets S1, . . . , SK of (roughly) equal size at random. Let D−k := Dn\{(yi, xi)}i∈Sk .
3: for k = 1, . . . ,K do
4: Pick without replacement a random subset X̄ of {xi}i∈Sk of size T .
5: for x̄ ∈ X̄ do
6: for ζ ∈ ∆ do
7: Fit a regression model f̂−k using the data D−k and compute its in-sample

residuals {ε̂i−k}i6∈Sk := {yi − f̂−k(xi)}i6∈Sk .
8: Solve the ER-DRO problem below at covariate x̄ to get solution ẑDRO−k (x̄, ζ)

min
z∈Z

sup
Q∈P̂−k(x̄)

EY∼Q [c(z, Y )] ,

where the ambigiuity set P̂−k(x̄) with radius ζ is centered at the

estimated empirical distribution P̂ER−k (x̄) :=
1

n− |Sk|
∑
i 6∈Sk

δf̂−k(x̄)+ε̂i−k
.

9: end for
10: end for
11: end for

12: Output: Radius ζn ∈ arg min
ζ∈∆

1

T

∑
x̄∈X̄

1

K

∑
k∈[K]

1

|Sk|
∑
i∈Sk

c(ẑDRO−k (x̄, ζ), yi) for the ambiguity set P̂n(x) for the

ER-DRO problem (7).

We compare the ER-SAA formulation (5) (denoted by E) with ER-DRO formulations that use
the 1-Wasserstein-based ambiguity set defined using the `1-norm (denoted by W), the sample robust
optimization-based ambiguity set constructed using the `1-norm (denoted by S), and the ambiguity set
with the same support as P̂ERn (x) defined using the Hellinger distance (denoted by H, see Example 2
in Section 3). Different from the setup in Section 3, we use the `1-norm to define the 1-Wasserstein
and sample robust optimization-based ambiguity sets so that the resulting ER-DRO problems can be
expressed as LPs [19]. Formulation H can be expressed as a conic quadratic program [6].

We vary the dimension dx of the covariates, the sample size n, and the degree θ in our computational
experiments. We use Algorithms 1 and 2 to specify the radii ζn of the above ambiguity sets for the
ER-DRO problem (7) with K = 5 folds in both algorithms and T = min{50, bn5 c} in Algorithm 2. For
all ER-DRO formulations, following [19], we choose the radius ζn from the set of 28 candidate points
{b× 10e : b ∈ {0, 1, . . . , 9}, e ∈ {−1,−2,−3}} instead of R+.

Solutions obtained from the different approaches are compared by estimating a normalized version
of the upper bound of a 99% confidence interval (UCB) on their optimality gaps using the multiple
replication procedure (MRP) [34]; see Algorithm 1 in [29] for a detailed description of the MRP in our
context. We use 5000 i.i.d. samples from the conditional distribution of Y given X = x to compute
these UCBs. Because the data-driven solutions depend on the realization of Dn, we perform 50 data
replications per test instance, sample 20 different covariate realizations x ∈ X , and report our results
in the form of box plots of these 50 × 20 = 1000 UCBs. The boxes denote the 25th, 50th, and 75th

percentiles of the 99% UCBs, and the whiskers denote the 2nd and 98th percentiles of the 99% UCBs
over the 1000 instances.

We compare Algorithms 1 and 2 with an “optimal covariate-independent” specification of ζn. This
optimal covariate-independent radius is determined by choosing ζn such that the medians of the 99%
UCBs over the 20 different covariate realizations are minimized. Determining this optimal covariate-
independent radius ζn is impractical because it requires 5000 i.i.d. samples from the conditional distri-
bution of Y given X = x (which a decision-maker does not have). We consider it only to benchmark the
performance of Algorithms 1 and 2 for choosing the radius.

Source code and data for the test instances will be made available at https://github.com/rohitkannan/
DD-DRO. Our codes are written in Julia 0.6.4 [13], use Gurobi 8.1.0 to solve LPs and conic quadratic
programs through the JuMP 0.18.5 interface [18], and use glmnet 0.3.0 [22] for Lasso regression. All
computational tests were conducted through the UW-Madison Center for High Throughput Computing
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Figure 1: (Covariate-independent tuning of the Wasserstein radius) Comparison of the E+OLS
approach (E) with the optimal covariate-independent tuning (I∗) of the W+OLS radius and the covariate-
independent tuning of the W+OLS radius using Algorithm 1 (1) and Algorithm 2 (2). Top row: θ = 1.
Middle row: θ = 0.5. Bottom row: θ = 2. Left column: dx = 3. Middle column: dx = 10. Right column:
dx = 100.

(CHTC) software HTCondor (http://chtc.cs.wisc.edu/).

Covariate-independent tuning of the radius. Figure 1 compares the performance of the E+OLS
formulation with the W+OLS formulation when the radius ζn of the ambiguity set is determined using
Algorithms 1 and 2 and optimal covariate-independent tuning. We vary the model degree θ, the covari-
ate dimension among dx ∈ {3, 10, 100}, and the sample size among n ∈ {1.5(dx + 1), 2(dx + 1), 3(dx +
1), 5(dx + 1)} in these experiments. As noted in Section 1, we focus on the small sample size regime. In
this regime, the W+OLS formulations perform better than the E+OLS formulation across all cases. The
radius specified by Algorithm 2 exhibits better performance than the radius specified using Algorithm 1,
with the difference being most significant for larger covariate dimensions. The difference between the
performance of Algorithm 2 and the optimal covariate-independent tuning of the radius ζn reduces with
increasing sample size and covariate dimension. Finally, as expected, the benefits of the ER-DRO for-
mulations diminish with increasing sample size.

Comparison of the different DRO formulations. Figure 2 compares the performance of the E+OLS
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formulation with the W+OLS, S+OLS, and H+OLS formulations over the same range of parameter values
as in Figure 1. The radius ζn of the ambiguity sets of all three ER-DRO formulations are specified using
Algorithm 2. The performance of the S+OLS formulation is similar to that of the W+OLS formulation,
whereas the H+OLS formulation does not significantly improve over the E+OLS formulation with only a
slight improvement for larger covariate dimensions. Recall that the Wasserstein (W) and sample robust
optimization (S) ambiguity sets allow distributions with support different from P̂ERn (x), whereas the
Hellinger (H) ambiguity set only considers distributions with the same support as P̂ERn (x). Because the
data Dn comes from a continuous distribution and P̂ERn (x) may be a crude estimate of P ∗n(x) for small n,
this highlights the advantage of DRO formulations that go beyond the estimated empirical distribution
P̂ERn (x). From this point on, we do not include any additional results for the S formulations because
they are similar to those of the W formulations. We also do not consider the H formulations any further.

Impact of the prediction step. Figure 3 compares the performance of the E+Lasso approach with
the W+Lasso approach when ζn is specified using Algorithm 2. We consider dx = 100, vary the model
degree θ, and vary the sample size among n ∈ {0.5(dx + 1), 0.8(dx + 1), 1.2(dx + 1), 1.5(dx + 1)} in these
experiments. We consider smaller sample sizes and larger covariate dimensions because the Lasso is most
effective in this regime. These experiments also illustrate the modularity of our residuals-based formula-
tions. The W+Lasso formulation outperforms the E+Lasso formulation for small n. Note that the y-axis
limits are different for the different values of θ. Once again, the benefit of the ER-DRO formulation
diminishes with increasing sample size.

Wasserstein-DRO certificates. Figure 4 compares normalized versions6 of the optimal objective
value v̂ERn (x) of the E+OLS formulation with the optimal objective value v̂DROn (x) of the W+OLS formu-
lations when the radius ζn is specified by Algorithm 2. We consider dx = 100, vary the model degree θ,
and vary the sample size among n ∈ {1.5(dx+1), 2(dx+1), 3(dx+1), 5(dx+1)} in these experiments. We
omit the results for smaller covariate dimensions for brevity. First, we see that the ER-SAA solutions are
optimistically biased and the bias reduces with increasing sample size (cf. [10, 19, 34]). Second, the mean
and the median of the UCBs for the ER-DRO solutions are closer to zero, which implies the ER-DRO
formulations reduce the bias of the ER-SAA formulation. This is expected since we chose the radius ζn
with the goal of reducing the out-of-sample costs of the ER-DRO estimators. Note again that the y-axis
limits are different for the different values of θ.

8 Conclusion and future work

We propose a flexible data-driven DRO framework for incorporating covariate information in stochastic
optimization when we only have limited concurrent observations of random variables and covariates.
We study formulations that build a Wasserstein ambiguity set or an ambiguity set with only discrete
distributions on top of a data-driven SAA formulation. Our approach seamlessly generalizes existing
DRO formulations that do not use covariate information without sacrificing tractability or favorable
theoretical guarantees. We explore data-driven approaches for sizing our ambiguity sets. Numerical
experiments illustrate that our residuals-based Wasserstein and sample robust optimization DRO for-
mulations can outperform the ER-SAA formulation in the limited data regime. We conclude that the
ER-DRO and ER-SAA approaches are complementary. With limited data, the ER-DRO approach can
yield better solutions. On the other hand, the value of ER-DRO over ER-SAA diminishes if there is am-
ple data available, and the ER-SAA formulation remains tractable under milder assumptions on the true
problem (3) compared to the Wasserstein and sample robust optimization-based ER-DRO formulations.
In particular, the latter ER-DRO formulations generally result in NP-hard formulations for two-stage
stochastic programs and hence may require approximations [30, 37].

Designing residuals-based SAA and DRO formulations that weaken the independence assumption
between the covariates X and the errors ε and analyzing their theoretical properties are interesting
avenues for future work. Extensions of the ER-SAA and ER-DRO formulations for the multi-stage
stochastic programming setting (cf. [9]), for the case when decisions affect the realizations of the random
variables (cf. [8]), and for problems with stochastic constraints (cf. [28]) also merit further investigation.

6We plot 100
(
v̂ER
n (x)−v∗(x)

v∗(x)

)
for the ER-SAA formulation and 100

(
v̂DRO
n (x)−v∗(x)

v∗(x)

)
for the ER-DRO formulation.
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Figure 2: (Comparison of the different ER-DRO formulations) Comparison of the E+OLS ap-
proach (E) with the covariate-independent tuning of the W+OLS radius (W), the S+OLS radius (S), and
the H+OLS radius (H), all tuned using Algorithm 2. Top row: θ = 1. Middle row: θ = 0.5. Bottom row:
θ = 2. Left column: dx = 3. Middle column: dx = 10. Right column: dx = 100.
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Figure 3: (Wasserstein-DRO with the Lasso) Comparison of the E+Lasso approach (E) with the
covariate-independent tuning of the W+Lasso radius using Algorithm 2 (W) for dx = 100. Left: θ = 1.
Middle: θ = 0.5. Right: θ = 2.
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independent tuning of the W+OLS Wasserstein radius using Algorithm 2 (W) for dx = 100. Left: θ = 1.
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A Omitted Proofs

A.1 Proof of Theorem 6

From Theorem 5, we have

P
{
dW,p(P̂

ER
n (x), PY |X=x) > ζn(αn, x)

}
≤ αn, for a.e. x ∈ X .

Adapting the arguments in [19, Lemma 3.7], we a.s. have limn→∞ dW,p(PY |X=x, Qn(x)) = 0 for a.e.

x ∈ X for any distribution Qn(x) ∈ P̂n(x; ζn(αn, x)). Theorem 6.9 of [43] then a.s. implies that Qn(x)
converges weakly to PY |X=x in the space of distributions with finite pth moments for a.e. x ∈ X .

Theorem 5 also implies that for a.e. x ∈ X

P
{
v∗(x) ≤ g(ẑDROn (x);x) ≤ v̂DROn (x)

}
≥ 1− αn, ∀n ∈ N.

Since
∑
n αn < +∞, the Borel-Cantelli lemma a.s. implies that for all n large enough

v∗(x) ≤ g(ẑDROn (x);x) ≤ v̂DROn (x), for a.e. x ∈ X . (15)

Therefore, to establish limn→∞ v̂DROn (x) = v∗(x) = limn→∞ g(ẑDROn (x);x) in probability (or a.s.) for
a.e. x ∈ X , it suffices to show that lim supn→∞ v̂DROn (x) ≤ v∗(x) a.s. for a.e. x ∈ X .

Fix η > 0. For a.e. x ∈ X , let z∗(x) ∈ S∗(x) be an optimal solution to the true problem (3), and
Q∗n(x) ∈ P̂n(x; ζn(αn, x)) be such that

sup
Q∈P̂n(x;ζn(αn,x))

EY∼Q [c(z∗(x), Y )] ≤ EY∼Q∗n(x) [c(z∗(x), Y )] + η.

We suppress the dependence of Q∗n(x) on η for simplicity. We a.s. have for a.e. x ∈ X

lim sup
n→∞

v̂DROn (x) ≤ lim sup
n→∞

sup
Q∈P̂n(x;ζn(αn,x))

EY∼Q [c(z∗(x), Y )]

≤ lim sup
n→∞

EY∼Q∗n(x) [c(z∗(x), Y )] + η

= g(z∗(x);x) + η = v∗(x) + η.

The first equality above follows from the fact that Q∗n(x) converges weakly to PY |X=x (as noted above)
and by Definition 6.8 of [43] (which holds by virtue of Assumption 3). Since η > 0 was arbitrary, we
conclude that lim supn→∞ v̂DROn (x) ≤ v∗(x) a.s. for a.e. x ∈ X .

Finally, we show that any accumulation point of {ẑDROn (x)} is almost surely an element of S∗(x) for

a.e. x ∈ X , and argue that this implies dist(ẑDROn (x), S∗(x))
a.s.−−→ 0 for a.e. x ∈ X . From (15) and the

above conclusion, we a.s. have

lim inf
n→∞

g(ẑDROn (x);x) ≤ lim
n→∞

v̂DROn (x) = v∗(x), for a.e. x ∈ X .
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Let z̄(x) be an accumulation point of ẑDROn (x) for a.e. x ∈ X . Assume by moving to a subsequence if
necessary that limn→∞ ẑDROn (x) = z̄(x). We a.s. have for a.e. x ∈ X

v∗(x) ≤ g(z̄(x);x) ≤ E
[
lim inf
n→∞

c(ẑDROn (x), f∗(x) + ε)
]
≤ lim inf

n→∞
g(ẑDROn (x);x) ≤ v∗(x),

where the second inequality follows from the lower semicontinuity of c(·, Y ) on Z for each Y ∈ Y and
the third inequality follows from Fatou’s lemma by virtue of Assumption 3. Consequently, we a.s. have
that z̄(x) ∈ S∗(x).

Suppose by contradiction that dist(ẑDROn (x), S∗(x)) does not a.s. converge to zero for a.e. x ∈ X .
Then, there exists X̄ ⊆ X with PX(X̄ ) > 0 such that for each x ∈ X̄ , dist(ẑDROn (x), S∗(x)) does not
a.s. converge to zero. Since Z is compact, any sequence of estimators {ẑDROn (x)} has a convergent
subsequence for each x ∈ X̄ . Therefore, whenever dist(ẑDROn (x), S∗(x)) does not converge to zero for
some x ∈ X̄ and a realization of the data Dn, there exists an accumulation point of the sequence
{ẑDROn (x)} that is not a solution to problem (3). This contradicts the fact that every accumulation
point of {ẑDROn (x)} is almost surely a solution to problem (3) for a.e. x ∈ X .

A.2 Proof of Theorem 7

From inequality (15) in the proof of Theorem 6, we a.s. have for all n large enough that

v∗(x) ≤ g(ẑDROn (x);x) ≤ v̂DROn (x), for a.e. x ∈ X .

Adapting the arguments in [19, Lemma 3.7], we a.s. have for any distribution Qn(x) ∈ P̂n(x; ζn(αn, x))
and n large enough that dW,p(PY |X=x, Qn(x)) ≤ 2ζn(αn, x) for a.e. x ∈ X .

Let z∗(x) ∈ S∗(x) be an optimal solution to the true problem (3) for a.e. x ∈ X . Suppose Assump-
tion 4 holds. Define

P̄1,n(x; ζn(αn, x)) :=
{
Q ∈ P(Y) : dW,1(Q,PY |X=x) ≤ 2ζn(αn, x)

}
.

Using the fact that P̂n(x; ζn(αn, x)) ⊆ P̄1,n(x; ζn(αn, x)) for all orders p ∈ [1,+∞), we a.s. have for n
large enough and for a.e. x ∈ X that

v̂DROn (x) ≤ sup
Q∈P̄1,n(x;ζn(αn,x))

EY∼Q [c(z∗(x), Y )] ≤ g(z∗(x);x) + 2L1(z∗(x))ζn(αn, x), (16)

where the second inequality follows from Assumption 4 and the Kantorovich-Rubinstein theorem (cf.
[30, Theorem 5]). The desired result follows from inequalities (15) and (16).

Suppose instead that Assumption 5 holds and p ∈ [2,+∞). Define

P̄2,n(x; ζn(αn, x)) :=
{
Q ∈ P(Y) : dW,2(Q,PY |X=x) ≤ 2ζn(αn, x)

}
.

Since P̂n(x; ζn(αn, x)) ⊆ P̄2,n(x; ζn(αn, x)) for all orders p ∈ [2,+∞), we a.s. have for n large enough
and a.e. x ∈ X that

v̂DROn (x) ≤ sup
Q∈P̄2,n(x;ζn(αn,x))

EY∼Q [c(z∗(x), Y )] (17)

≤ g(z∗(x);x) + 2
(
E
[
‖∇c(z∗(x), Y )‖2

])1/2
ζn(αn, x) + 4L2(z∗(x))ζ2

n(αn, x),

where the second inequality follows from Assumption 5 and [23, Lemma 2] (see also [24]). The desired
result then readily follows from inequalities (15) and (17).

B Ambiguity sets satisfying Assumption 10

Lemma 13 of [17] (cf. [6, 31, 32]) shows that for phi-divergence ambiguity sets Pn(x; ζn(x)) constructed
using a twice continuously differentiable and strictly convex divergence function φ with φ′(1) = 0 (these
conditions are satisfied by most of the divergence functions listed in [6, Table 2]), we have

sup
p∈Pn(x;ζn(x))

n∑
i=1

(
pi −

1

n

)2

= Θ

(
ζn(x)

n

)
.
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Consequently, Assumption 10 holds for such phi-divergence-based ambiguity sets Pn(x; ζn(x)) whenever
the radius ζn(x) = O(n1−ρ). This bound on ζn(x) is sharp in the sense that Assumption 10 does not
hold if ζn(x) grows faster than n1−ρ asymptotically. Lemma 15 below determines sharp bounds on the
radius ζn(x) for some other families of ambiguity sets to satisfy Assumption 10. Before presenting the
lemma, we introduce a third example of the ambiguity set Pn(x; ζn(x)) to add to Examples 1 and 2 in
Section 3.

Example 3. Mean-upper-semideviation-based ambiguity sets [40]: given order a ∈ [1,+∞) and radius
ζn(x) ≥ 0, let b := a/(a− 1) and define P̂n(x) using

Pn(x; ζn(x)) :=

{
p ∈ Rn+ :

n∑
i=1

pi = 1 and ∃ q ∈ Rn+ such that ‖q‖b ≤ ζn(x),

pi =
1

n

[
1 + qi −

1

n

n∑
j=1

qj

]
,∀i ∈ [n]

}
.

Lemma 15. The following ambiguity sets satisfy Assumption 10 with constant ρ ∈ (1, 2]:

(a) CVaR-based ambiguity sets (see Example 1) with radius ζn(x) = O(n1−ρ),

(b) Variation distance-based ambiguity sets (see Example 2) with radius ζn(x) = O(n−ρ/2),

(c) Mean-upper-semideviation-based ambiguity sets of order a ∈ [1,+∞) (see Example 3) with radius

ζn(x) =

{
O(n1−ρ/2) if a ≥ 2

O(n3/2−1/a−ρ/2) if a < 2
.

Furthermore, these bounds are sharp in the sense described above.

Proof. (a) Assume that ζn(x) < 0.5. We begin by noting that there exists an optimal solution to

the problem supp∈Pn(x;ζn(x))

∑n
i=1

(
pi− 1

n

)2
that is an extreme point of the polytope Pn(x; ζn(x)).

Furthermore, every extreme point of Pn(x; ζn(x)) satisfies at least n−1 of the set of 2n inequalities{
pi ≥ 0, i ∈ [n], pi ≤ 1

n(1−ζn(x)) , i ∈ [n]
}

, with equality. This implies that there exists an optimal

solution at which at least n− 1 of the pis either take the value zero, or take the value 1
n(1−ζn(x)) .

At this solution, n− 1 of the terms
(
pi − 1

n

)2
are either 1

n2 or 1
n2

( ζn(x)
1−ζn(x)

)2
(with 1

n2 larger since

ζn(x) < 0.5 by assumption).

Suppose M ∈ {0, . . . , n−1} of the inequalities pi ≥ 0, i ∈ [n], are satisfied with equality at such
an optimal solution. Since

∑n
i=1 pi = 1 and pi ≤ 1

n(1−ζn(x)) , ∀i ∈ [n], we require (n−M) 1
n(1−ζn(x)) ≥

1, which implies M ≤ nζn(x). Consequently, M ≤ nζn(x) < n/2 of the inequalities pi ≥ 0, i ∈ [n],
are satisfied with equality and at least (n− 1−M) ≥ n(1− ζn(x))− 1 > n/2− 1 of the inequalities
pi ≤ 1

n(1−ζn(x)) , i ∈ [n], are satisfied with equality. Therefore, whenever ζn(x) < 0.5, we have:

n∑
i=1

(
pi −

1

n

)2

≤ (nζn(x) + 1)
1

n2
+ n(1− ζn(x))

1

n2

(
ζn(x)

1− ζn(x)

)2

=
1

n2
+

1

n

(
ζn(x)

1− ζn(x)

)
.

Because the above analysis is constructive, it can be immediately used to deduce that the bound
on ζn(x) is sharp.

(b) The stated result follows from the fact that

n∑
i=1

(
pi −

1

n

)2

≤

(
n∑
i=1

∣∣∣∣pi − 1

n

∣∣∣∣
)2

≤ ζ2
n(x), ∀p ∈ Pn(x; ζn(x)), x ∈ X .
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To see that the above bound is sharp, assume without loss of generality that n ≥ 2 and ζn(x) ≤ 1.
Then, because (

1

n
+
ζn(x)

2
,

1

n
− ζn(x)

2n− 2
, . . . ,

1

n
− ζn(x)

2n− 2︸ ︷︷ ︸
n−1 terms

)
∈ Pn(x; ζn(x)),

we have

sup
p∈Pn(x;ζn(x))

n∑
i=1

(
pi −

1

n

)2

≥ ζ2
n(x)

4
+

ζ2
n(x)

4(n− 1)
.

(c) Let q̄ := 1
n

∑n
i=1 qi. We have:

sup
p∈Pn(x;ζn(x))

n∑
i=1

(
pi −

1

n

)2

≤ sup
q∈Qn(x;ζn(x))

1

n2

n∑
i=1

(qi − q̄)2,

where Qn(x; ζn(x)) :=
{
q ∈ Rn+ : ‖q‖b ≤ ζn(x)

}
. Note that for each q ∈ Qn(x; ζn(x)), we have

|q̄| ≤ n−1‖q‖1 ≤ n−1/b‖q‖b, which in turn implies

‖q − q̄1‖b ≤ ‖q‖b + |q̄|‖1‖b = ‖q‖b + |q̄|n1/b ≤ ‖q‖b + ‖q‖b ≤ 2ζn(x),

where 1 is a vector of ones of appropriate dimension. Additionally, note that

n∑
i=1

(qi − q̄)2 = ‖q − q̄1‖2 ≤

{
‖q − q̄1‖2b if b ≤ 2

n1−2/b‖q − q̄1‖2b if b > 2
.

The desired result then follows from

sup
q∈Qn(x;ζn(x))

1

n2

n∑
i=1

(qi − q̄)2 ≤ sup
{q:‖q−q̄1‖b≤2ζn(x)}

1

n2
‖q − q̄1‖2

≤

{
4
n2 ζ

2
n(x) if b ≤ 2

4
n1+2/b ζ

2
n(x) if b > 2

.

We now show that the above bounds are sharp.

Consider first the case when b ≤ 2 and assume without loss of generality that ζn(x) = O(
√
n).

Note that pi = 1
n

[
1 + qi − 1

n

∑n
j=1 qj

]
, i ∈ [n], with q1 = ζn(x) and qi = 0, ∀i ≥ 2, is an element

of Pn(x; ζn(x)). Therefore

sup
p∈Pn(x;ζn(x))

n∑
i=1

(
pi −

1

n

)2

= Θ

(
ζ2
n(x)

n2

)
.

Next, suppose instead that b > 2 and assume without loss of generality that ζn(x) = O(n1/b).

Note that pi = 1
n

[
1 + qi − 1

n

∑n
j=1 qj

]
with qi =

{(
2
n

)1/b
ζn(x) if i ≡ 0 (mod 2)

0 if i ≡ 1 (mod 2)
, i ∈ [n], is an

element of Pn(x; ζn(x)). Therefore

sup
p∈Pn(x;ζ1,n(x))

n∑
i=1

(
pi −

1

n

)2

= Θ

(
ζ2
n(x)

n1+2/b

)
.

C Additional computational results

We first introduce Algorithm 3 that determines a covariate-dependent radius ζn(x) using K-fold CV on
the ER-DRO problem (7). For each fold, this algorithm estimates the regression function f∗ twice: once
using the data omitted in the fold for setting up the ER-DRO problem (7), and once using the data
in the fold for estimating the out-of-sample costs of the constructed DRO solutions. Clearly, there is a

28



Algorithm 3 Specifying a covariate-dependent radius ζn(x) using the ER-DRO problem

1: Input: data Dn, set of candidate radii ∆, number of folds K, and new covariate realization x ∈ X .
2: Partition [n] into subsets S1, . . . , SK of (roughly) equal size at random. Let D−k := Dn\{(yi, xi)}i∈Sk .
3: for k = 1, . . . ,K do
4: for ζ ∈ ∆ do
5: Fit a regression model f̂−k using the data D−k and compute its in-sample

residuals {ε̂i−k}i 6∈Sk := {yi − f̂−k(xi)}i6∈Sk .
6: Solve the ER-DRO problem below at covariate x to obtain solution ẑDRO−k (x, ζ)

min
z∈Z

sup
Q∈P̂−k(x)

EY∼Q [c(z, Y )] ,

where the ambigiuity set P̂−k(x) with radius ζ is centered at the estimated

empirical distribution P̂ER−k (x) :=
1

n− |Sk|
∑
i 6∈Sk

δf̂−k(x)+ε̂i−k
.

7: Fit a regression model f̂k using the data {(yi, xi)}i∈Sk and compute its

in-sample residuals {ε̂ik}i∈Sk := {yi − f̂k(xi)}i∈Sk .
8: end for
9: end for

10: Output: Radius ζn(x) ∈ arg min
ζ∈∆

1

K

∑
k∈[K]

1

|Sk|
∑
i∈Sk

c(ẑDRO−k (x, ζ), f̂k(x) + ε̂ik) for the ambiguity set P̂n(x) for

the ER-DRO problem (7).

trade-off between the number of data samples used to construct each estimate of f∗. Because we are
particularly interested in the limited data regime, we propose to use a sparse estimation technique (such
as the Lasso) for the second estimation step (i.e., for line 7 of Algorithm 3).

For the numerical experiments in this section, we use Lasso regression in line 7 of Algorithm 3 and
5-fold CV (i.e., K = 5). Similar to Algorithms 1 and 2, we choose the radius ζn(x) from the set of 28 can-
didate points {b× 10e : b ∈ {0, 1, . . . , 9}, e ∈ {−1,−2,−3}} instead of R+. We benchmark Algorithm 3
against the “optimal covariate dependent” specification of ζn(x) that is determined by choosing ζn(x)
such that the 99% UCBs are minimized. We stress that determining this optimal radius ζn(x) is imprac-
tical because it requires 5000 i.i.d. samples from the conditional distribution of Y given X = x, which a
decision-maker does not have.

Covariate-dependent tuning of the radius. Figure 5 compares the performance of the E+OLS
formulation with the W+OLS formulations when the radius ζn(x) of the ambiguity set is determined
using Algorithms 2 and 3 and optimal covariate-dependent tuning. We vary the model degree θ, the
covariate dimension among dx ∈ {3, 10, 100}, and the sample size among n ∈ {8(dx+1), 10(dx+1), 12(dx+
1), 15(dx+ 1)} for dx = 3, among n ∈ {3(dx+ 1), 4(dx+ 1), 5(dx+ 1), 10(dx+ 1)} for dx = 10, and among
n ∈ {1.5(dx + 1), 2(dx + 1), 3(dx + 1), 5(dx + 1)} for dx = 100 in these experiments7. The ER-DRO
formulations perform better than the ER-SAA+OLS approach across all the cases. The radius specified
by Algorithm 2 performs slightly better than the radius specified using Algorithm 3 for most cases and
more so at smaller sample sizes. The difference between the performance of Algorithm 3 and the ideal
covariate-dependent tuning of the radius persists even with increasing covariate dimension and increasing
sample size. These results indicate that while covariate-dependent tuning theoretically has potential to
yield better results than the covariate-independent tuning of Algorithm 2, Algorithm 3is not able to
obtain good estimate of the optimal covariate-dependent radius ζn(x) with the data available.

Comparison of the radii specified by Algorithms 1, 2, and 3. Figure 6 compares the radii
specified by Algorithms 1, 2, and 3 with the optimal covariate-dependent radius and optimal covariate-
independent radius for the W+OLS formulation. We consider dx = 100, vary the model degree θ, and
vary the sample size among n ∈ {1.5(dx + 1), 2(dx + 1), 3(dx + 1), 5(dx + 1)} in these experiments. First,
note that the radius specified by Algorithm 1 shrinks very quickly to zero for all three values of θ. Conse-
quently, we note from Figure 1 that the resulting ER-DRO estimators do not perform much better than

7We use these sample sizes since Algorithm 3 with 5-fold CV requires at least 30 samples. This is because line 7 of
Algorithm 3 needs at least 6 points for Lasso regression with CV.
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Figure 5: (Covariate-dependent tuning of the Wasserstein radius) Comparison of the E+OLS approach
(E) with the optimal covariate-dependent tuning (D∗) of the W+OLS radius, the covariate-dependent tuning of
the W+OLS radius using Algorithm 3 (3), and the covariate-independent tuning of the W+OLS radius using
Algorithm 2 (2). Top row: θ = 1. Middle row: θ = 0.5. Bottom row: θ = 2. Left column: dx = 3. Middle
column: dx = 10. Right column: dx = 100.

the corresponding ER-SAA estimators. Second, we see that the covariate-independent specifications of
the radii result in more narrow distributions compared to the covariate-dependent specifications. This
may be because the covariate-independent specifications of the radius attempt to choose a single value
of ζn(x) for all possible covariate realizations x ∈ X , whereas the covariate-dependent specifications can
choose a different value of ζn(x) depending on the realization x ∈ X . Third, the distribution of the
radii determined using Algorithm 3 converges to the distribution of the optimal covariate-dependent
radii as the sample size increases. Similarly, the distribution of the radii determined using Algorithm 2
converges to the distribution of the optimal covariate-independent radii as n increases (except for the
case when θ = 2 because the optimal solution on line 12 of Algorithm 2 is not unique). Finally, as noted
in Section 6, it may be advantageous to use a positive radius for the ambiguity set when the prediction
model is misspecified (e.g., using OLS regression even when θ 6= 1—the true dependence of Y on X is
nonlinear in this case). This is corroborated by the plots for θ = 2, where the distribution of the optimal
covariate-dependent radius is far from the zero distribution even for large sample sizes n (note that the
y-axis limits for θ = 2 are different from those for θ = 1 and θ = 0.5).
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Figure 6: (Comparison of the radii specified by Algorithms 1, 2, and 3) Comparison of the optimal
covariate-dependent tuning (D∗) of the W+OLS radius, the optimal covariate-independent tuning (I∗) of the
W+OLS radius, the covariate-dependent tuning of the W+OLS radius using Algorithm 3 (3), and the covariate-
independent tuning of the W+OLS radius using Algorithm 1 (1) and Algorithm 2 (2) for dx = 100. Left: θ = 1.
Middle: θ = 0.5. Right: θ = 2.
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Figure 7: (Comparison of Wasserstein-DRO with J-SAA) Comparison of the E+OLS (E) and J+OLS (J)
approaches with the covariate-dependent tuning of the W+OLS radius using Algorithm 3 (3) and the covariate-
independent tuning of the W+OLS radius using Algorithm 2 (2) for dx = 100. Left: θ = 1. Middle: θ = 0.5.
Right: θ = 2.

Comparison with the Jackknife-based formulations. Figure 7 compares the performance of the
ER-SAA+OLS approach and the Jackknife-based SAA (J-SAA+OLS) approach [29] with the W+OLS
formulations when the radius ζn(x) is specified using Algorithms 2 and 3. We consider dx = 100, vary
the model degree θ, and vary the sample size among n ∈ {1.3(dx + 1), 1.5(dx + 1), 2(dx + 1), 3(dx + 1)} in
these experiments. As observed in [29], the J-SAA+OLS formulation performs better than the E+OLS
formulation in the small sample size regime. Figure 7 shows that the W+OLS formulations outperform
the J-SAA+OLS formulation. This is to be expected because the ER-DRO formulations account for
both the errors in the approximation of f∗ by f̂n and in the approximation of PY |X=x by P ∗n(x), whereas
the J-SAA+OLS formulation only addresses the bias in the residuals obtained from OLS regression (i.e.,

even if f̂n is an accurate estimate of f∗, the J-SAA+OLS formulation does not account for the fact that
P ∗n(x) may be a crude approximation of PY |X=x). We omit the results for the J+-SAA+OLS formulation
because they are similar to those for the J-SAA+OLS formulation.
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