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Abstract—We propose an optimization framework for stochas-
tic optimal power flow with uncertain loads and renewable
generator capacity. Our model follows previous work in assuming
that generator outputs respond to load imbalances according to
an affine control policy, but introduces a model of saturation
of generator reserves by assuming that when a generator’s
target level hits its limit, it abandons the affine policy and
produces at that limit. This is a particularly interesting feature
in models where wind power plants, which have uncertain
upper generation limits, are scheduled to provide reserves to
balance load fluctuations. The resulting model is a nonsmooth
nonconvex two-stage stochastic program, and we use a stochastic
approximation method to find stationary solutions to a smooth
approximation. Computational results on 6-bus and 118-bus
test instances demonstrate that by considering the effects of
saturation, our model can yield solutions with lower expected
generation costs (at the same target line violation probability
level) than those obtained from a model that enforces the affine
policy to stay within generator limits with high probability.

Index Terms—Optimal power flow, renewables integration,
generation limits, stochastic programming.

I. INTRODUCTION

Large shares of renewable energy increases the variability
and uncertainty in power grid operations, and frequently leads
to a larger demand for balancing energy through generation
reserves. Understanding and counteracting potentially adverse
effects of this uncertainty requires models that accurately
capture its impact on the network. Ignoring the effect of
uncertainties while making dispatching decisions can result
in unsafe operations [1], whereas considering them can sig-
nificantly improve system security while simultaneously en-
abling economic efficiency [2]. Many approaches to stochastic
optimal power flow (OPF) problems have typically relied on
affine generation control policies to balance fluctuating power
demands, mimicking the actions of the automatic generation
control [1–5]. These policies require traditional generators to
provide a determined fraction of the necessary reserves. The
feasibility of the affine control policy is typically enforced
using conservative chance-constrained approximations [1, 3,
5], robust constraints [6], or by constraining the expected
exceedance of determined reserves [2, 4]. A key limitation of
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the affine control policy is that it does not adequately model
the behavior of the generators as they reach their upper or
lower generation limits [2, 4]. When the system faces large
demand fluctuations, some generators are likely to hit their
limits if the affine policy is used, in which case a realistic
generator will simply stop providing reserves and maintain a
fixed power output. Failing to model this behavior may result
in conservative results with economically inferior dispatching
decisions because requiring feasibility of the affine policy
forces each generator to maintain a too large reserve capacity.
This drawback becomes more pronounced when considering
reserves from uncertain resources, such as reserves provided
by renewable generators themselves [2] or demand response
resources [5].

To address this drawback, we introduce a new optimization
model that includes a more realistic and flexible representation
of reserve activation and captures the impact of upper and
lower generator limits, which we call reserve saturation. While
this reserve saturation model is an accurate reflection of
current system operations, it has, to the best of our knowledge,
never before been considered in the context of stochastic OPF.
Related work resets the affine control policy through activation
of manual reserves [4], imposes hard limitations on wind
power generation [2], or use multi-parametric programming as
a preprocessing step [7]. However, all these methods require
the user to pre-specify important aspects of the piecewise-
affine policies, leading to potentially sub-optimal solutions.
In contrast, we introduce a two-stage stochastic formulation
for the DC OPF problem that includes the reserve saturation
model in the second-stage, and thus inherently incorporates
and enforces power generation limits in conventional and
wind generators. By explicitly enforcing the piecewise control
policy as a second-stage constraint, the optimization problem
is able to identify the optimal generation and reserve alloca-
tion considering this behavior, without any pre-specified (and
potentially sub-optimal) input.

After introducing the model, we investigate conditions under
which it is feasible and derive a stochastic approximation
method for solving a smooth version of the model to local
optimality. Finally, we demonstrate the practical benefits of
our modeling framework on case studies based on a small 6-
bus system and the IEEE 118-bus system. In particular, we
assess the economic and environmental impact of allowing
wind power plants to provide significant reserves, and demon-
strate empirically that our approach finds solutions that satisfy
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physical limits with high probability through out-of-sample
testing.

This paper is organized as follows. Section II outlines
our reserve saturation model within a two-stage stochastic
programming framework, and Section III presents a stochastic
approximation method for solving an approximation. Sec-
tion IV briefly discusses alternative modeling approaches for
determining candidate first-stage solutions. Computational re-
sults are reported in Section V, and we conclude in Section VI.

Notation. We denote vectors by lower case letters and
their components using subscripts. We let int(S) denote the
interior of a set S, write (·)+ and (·)− to denote max{·, 0}
and min{·, 0}, logspace(a, b, n) to denote a vector of n
logarithmically-spaced points between 10a and 10b (both
inclusive), and write E [·] and σ [·] to denote expectation and
standard deviation operators. We do not make a notational
distinction between random variables and their realizations.

II. OPTIMAL POWER FLOW WITH RESERVE SATURATION

We introduce a two-stage stochastic programming model for
determining power generation and reserve levels in a power
system facing random loads and wind generation uncertainty.
In the first stage, the nominal generation levels, reserve ca-
pacities and reserve participation factors for each generator are
determined. These decisions are taken in advance of observing
the random demand and wind generation capacity. The second
stage models the system response to the observed load and
wind generation. This response, which requires the generators
to activate reserves to balance the system, is determined by
the reserve participation factors from the first-stage of the
optimization model. In our model, the random loads are
uncertain and non-dispatchable, representing a combination of
standard load and non-dispatchable renewable generation. We
assume that wind power plants are fully dispatchable, except
that their output is capped by the random available capacity.

A novel feature of our model is that we explicitly model
generator saturation in the second-stage formulation, which
occurs when the output of a generator, as determined by its
nominal generation level, participation factor, load imbalance,
and the control policy reaches its upper or lower generation
limit. A generator that reaches its lower/upper limit continues
to produce at that limit, and any additional balancing energy
must be provided by the remaining generators that have not
yet reached saturation. In this model, generators are allowed
to exceed their scheduled reserve capacity, but we assume
the system operator pays a higher price for doing so. While
generation limits are satisfied by virtue of our modeling
framework, we use a penalty on the the expected violation
of line limits to obtain a solution that satisfies the line limits
with high probability. The objective in our model is hence
to minimize the expected generation costs while keeping the
expected violation of the line limits small.

A. Network representation

We model the network as an undirected connected graph
G = (V, E), where V denotes the set of nodes/buses and E

denotes the set of edges/transmission lines. The set of wind
generators, regular generators, and loads are denoted by W ,
R, and D, respectively, and G := R ∪ W denotes the set
of all generators. The demand at node i ∈ D is a random
variable having expected value di. We assume for notational
convenience that each node in the network houses a load
and either a wind generator, or a regular generator. It is
straightforward to extend the model to include nodes with
no/multiple generators/loads.

B. First-stage decisions and constraints

The first-stage decisions include, for each generator i ∈ G,
the nominal generation levels p0i , the scheduled up- and down-
reserve levels r+i and r−i , and the generator participation
factors for reserves, αi. Note that the set of dispatchable
generators includes the wind generators. To ensure consistency
of our control policy (cf. [1, 2]), we require that the nominal
generation levels satisfy a power balance constraint for the
expected value of the demands and lie within pre-specified
bounds (p0,L and p0,U):∑

i∈G
p0i =

∑
j∈D

dj , p0,L ≤ p0 ≤ p0,U. (1)

For regular generators, p0,L = pmin and p0,U = pmax represent
the upper and lower generation limits. For wind power plants,
p0,L and p0,U represent the maximum and minimum generation
that the operator is willing to schedule from that plant.

The up- and down-reserve levels r+ and r− are constrained
to lie within pre-specified limits (r+,max, r−,max), and comply
with capacity limits for regular generators:

0 ≤ r+ ≤ r+,max, 0 ≤ r− ≤ r−,max, (2)

p0i + r+i ≤ p
max
i , p0i − r−i ≥ p

min
i , ∀i ∈ R. (3)

We assume that the reserve activation follows through the
automatic generation control (AGC), where the contribution of
each generator is determined through a participation factor [8].
The participation factors α are required to sum to one, and a
subset of generators Gres ⊂ G are required to provide reserves
with a minimum participation factor ε:

α ≥ 0,
∑
i∈G

αi = 1, αi ≥ ε, ∀i ∈ Gres. (4)

Let Res(α) := {i ∈ G : αi > 0} denote the set of
generators with positive participation factors for any choice
of α satisfying constraint (4), and note that Gres ⊂ Res(α).

C. Uncertain parameters and the recourse policy

We let ω denote the underlying random variables, and
assume that we can generate iid samples from its probability
distribution. Let d̃i(ω) represent the random fluctuations in the
power demands for i ∈ D, and pmin

i (ω) and pmax
i (ω), i ∈ W ,

represent the minimum and maximum wind generator power
outputs. For notational simplicity, we also define pmax

i (ω) ≡
pmax
i and pmin

i (ω) ≡ pmin
i for i ∈ R. Let Σd(ω) :=

∑
i∈D d̃i(ω)

denote the net demand fluctuation.
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A common assumption in power system modeling [1, 2, 5,
7, 8] is that the AGC reserve activation to balance the load
fluctuation Σd(ω) can be modelled as an affine control policy.
This affine policy adjusts the generation of the regular and
wind generators as

pi(ω) = p0i + αiΣd(ω), ∀i ∈ G, (5)

where pi(ω) denotes the power output of generator i ∈ G
for a realization of the random variables ω. While the affine
policy satisfies the total power balance constraint by virtue
of Eqns. (1) and (4), the generation levels pi(ω) determined
by this policy could exceed the generation limits pmin

i (ω) and
pmax
i (ω) if the magnitude of the deviation Σd(ω) is large. To

avoid such violations, existing approaches [1, 2, 5, 7] impose
tight constraints on the probability or expected magnitude of
generation limit violations, leading to conservative nominal
generation levels p0 and allocation of the participation factors
α, and preventing optimal use of generation capacity.

We propose a more realistic and physically accurate model
that includes reserve saturation. This model allows generators
to provide reserves with a determined participation factor
only until they hit their generation limits, after which other
non-saturated generators are required to contribute additional
reserves according to their relative participation factors. To
represent this model, we first define target generation levels
pT
i (ω) (which may violate generation limits) as follows:

pT
i (ω) = p0i + αiΣd(ω) + αis(ω), ∀i ∈ G, (6)

where s(ω) is a slack reserves variable which represents
the imbalance incurred by generators that have reached their
bounds and are no longer contributing reserves. Note that in
this model, s(ω) will be nonzero only if at least one generator
is saturated before the load is balanced.

For each generator i ∈ G, we now determine the actual
generation level pi(ω) (that honors generation limits) using
the piecewise-affine policy

pi(ω) =


pmin
i (ω), if pT

i (ω) < pmin
i (ω)

pT
i (ω), if pmin

i (ω) ≤ pT
i (ω) ≤ pmax

i (ω)

pmax
i (ω), if pT

i (ω) > pmax
i (ω).

(7)

By including reserve saturation, the generators follow their
target generation as long as pmin

i (ω) ≤ pT
i (ω) ≤ pmax

i (ω), but
remain at their upper or lower bound if the limits are exceeded.

While the first stage only requires the nominal generation
and load to be balanced, the second stage includes the DC
power flow constraints for each node i ∈ V:∑

j : (i,j)∈E

βij [θi(ω)− θj(ω)] = pi(ω)− di − d̃i(ω), (8)

where θi(ω) denotes the phase angle at bus i ∈ V and βij
(= βji) denotes the susceptance in the line (i, j). Summing
Eqn. (8) yields the following total power balance constraint:∑

i∈G
pi(ω) =

∑
j∈D

(
dj + d̃j(ω)

)
. (9)

For any given values of the generator levels pi(ω), there is a
one-dimensional affine space of solutions θi(ω) to Eqn. (8).
We assume without loss of generality that the first node is
chosen as the reference bus with θ1(ω) ≡ 0, which, along
with Eqn. (8), implies that there is a unique solution to the
phase angles θi(ω), i ∈ V , e.g., see Lemma 1.1 of [1]. Line
flows [βij(θi(ω)− θj(ω))] are encouraged to obey line limits
by using penalty terms in the objective function.

D. Solution to the second-stage problem

We now characterize conditions under which the system
of equations (6), (7), and (9) has a (unique) solution for the
second-stage variables

(
pT
i (ω), pi(ω), s(ω)

)
given fixed values

for the first-stage variables (p0, r+, r−, α).

Theorem 1. For each value of the first-stage variables satis-
fying Eqns. (1) to (4), the system of equations (6), (7), and (9)
is feasible exactly when Σd(ω) ∈ DF (p0, α, ω), where

DF (p0, α, ω) :=
[ ∑
i∈Res(α)

pmin
i (ω) +

∑
j 6∈Res(α)

p̄0j (ω)−
∑
k∈D

dk,

∑
i∈Res(α)

pmax
i (ω) +

∑
j 6∈Res(α)

p̄0j (ω)−
∑
k∈D

dk
]
.

Here, j 6∈ Res(α) is shorthand for j ∈ G\Res(α), and

p̄0j (ω) = median
(
p0j , p

min
j (ω), pmax

j (ω)
)
, ∀j 6∈ Res(α).

Furthermore, the solution for the pi(ω) variables is always
unique, whereas the solution for

(
pT
i (ω), s(ω)

)
is unique iff

Σd(ω) ∈ int(DF (p0, α, ω)).

The proof for Theorem 1 can be found in Appendix A.
We henceforth assume that Σd(ω) ∈ int(DF (p0, α, ω)) for
a.e. realization of ω for each value of p0 and α satisfying
Eqns. (1) to (4). Theorem 1 and its proof then implies that
given first-stage decisions p0 and α and a realization of the
random variables ω, computing the recourse solution reduces
to a one-dimensional search for the slack reserves s(ω).

E. Two-stage stochastic programming model

We propose the following two-stage stochastic DC-OPF
model with reserve saturation:

min
p0,r+,

r−,α

∑
i∈G

[
f1,i(p

0
i ) + f2,i(r

+
i ) + f3,i(r

−
i )
]

+Q(p0, r+, r−, α)

s.t. Constraints (1) to (4), (P)

where Q(p0, r+, r−, α) = Eω
[
q(p0, r+, r−, α, ω)

]
denotes the

expected second-stage costs with q(p0, r+, r−, α, ω) :=

min
p(ω),pT(ω),

s(ω),θ(ω)

∑
i∈G

[
q1,i
(
pi(ω)− p0i

)
+ q2,i

(
pi(ω)− (p0i + r+i )

)
+

q3,i
(
pi(ω)− (p0i − r−i )

) ]
+∑

(i,j)∈E

q4,ij (βij [θi(ω)− θj(ω)]) (R)

s.t. Constraints (6) to (8).

The functions f1, f2, and f3 in the first-stage objective
quantify the cost of nominal power generation and the cost of
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up- and down-reserve capacities, respectively. In the second-
stage problem, the term involving the function q1 quantifies
the cost of deviating from the generation level decided in the
first-stage, representing e.g., a mileage payment to generators,
whereas the terms involving the functions q2 and q3 correspond
to the penalties for using up- and down-reserves beyond the
scheduled reserve limits. Finally, the function q4 penalizes
‘large line flows’, with the penalty coefficient chosen to trade-
off between the cost of power generation and the line flow
violation probability. For simplicity, we use a linear weighting
approach for balancing the expected generation cost and the
expected violation cost. Alternatively, a constraint on the
expected violation penalty could be imposed. We assume that
functions f1 to f3 and q1 to q4 are continuously differentiable
with Lipschitz continuous gradients. For a practical example
of how the functions f1, f2, f3, q1, q2, q3, and q4 can be
defined, we refer to Section V.

III. SOLUTION APPROACH

Modeling reserve saturation introduces bilinear terms (in the
expression for the target generation levels (6)) and nonsmooth
nonconvex functions (in the saturation policy (7)). Thus, Prob-
lem (P) is a nonsmooth nonconvex two-stage stochastic pro-
gram, which is in general a challenging problem class to solve
even to local optimality. Theorem 1, however, indicates that the
recourse problem can be solved efficiently given any candidate
first-stage decision, as long as we have an efficient approach
to compute the unique recourse solution for a given first-stage
decision. In this section, we further show that by replacing
the saturation Eqn. (7) with a suitable smooth approximation,
partial derivatives of the recourse solution with respect to
the first-stage decisions can be computed by solving a linear
system. Therefore, Theorem 1 suggests a sampling-based
decomposition approach (i.e., an approach that works in the
space of the first-stage variables) for solving an approximation
of Problem (P) to obtain stationary solutions. The remainder of
this section proposes a smooth approximation of Problem (P)
and a stochastic approximation-based [9, 10] decomposition
approach for solving it. We refer the reader to [11, 12] for an
overview of stochastic approximation methods

A. Smooth approximation of Problem (P)

We propose a smooth approximation of Problem (P) to
obtain a formulation in which all functions are continuously
differentiable. The nonsmooth saturation function in (7) is
approximated by the continuously differentiable function

pi(ω) = gτsat
(pT
i (ω); pmin

i (ω), pmax
i (ω)), (10)

where gτ (x;x
L, xU) :=

xL, if x < xL − τ

xL +
(
x− (xL − τ)

)2
/4τ, if xL − τ ≤ x ≤ xL + τ

x, if xL + τ < x < xU − τ

xU −
(
x− (xU + τ)

)2
/4τ, if xU − τ ≤ x ≤ xU + τ

xU, if x > xU + τ

,

and τsat > 0 is a parameter that controls the approximation
quality. We call the approximation of Problem (P) resulting
from this modification ‘the smooth approximation’. Smaller
values of τsat yield more accurate, but numerically worse-
scaled formulations1. Although we use a smooth approxi-
mation of the piece-wise linear reserve activation function,
the actual generation level pi(ω) remains feasible as it never
exceeds the lower and upper generation bounds.

B. Solving the recourse problem of the smooth approximation

The analysis of Theorem 1 carries over to the smooth
approximation because the function gτ is monotonically non-
decreasing. Therefore, given values of the first-stage variables
and a realization of ω, the unique recourse solution can be
computed by solving the one-dimensional equation for the
slack reserves s(ω) that results from substituting Eqns. (6)
and (10) into Eqn. (9). We solve this equation by bisection.

Denote the (target) power generation levels obtained from
Eqns. (6) and (10) with s(ω) := 0 by p̂T

i (ω) := p0i +αiΣd(ω)
and

p̂i(ω) := gτsat
(p̂T
i (ω); pmin

i (ω), pmax
i (ω)).

Let the residual power imbalance of Eqn. (9) at these gener-
ation levels be denoted by

δd(ω) :=
∑
i∈G

p̂i(ω)−
∑
j∈D

(
dj + d̃j(ω)

)
.

If δd(ω) is negative, we need to increase generation by
providing up-reserves, whereas if δd(ω) is positive, we need
to decrease generation by providing down-reserves to balance
the overall load for the smooth approximation.

To determine the lower and upper bounds (sL, sU) for the
bisection procedure, we consider two cases. If δd(ω) < 0, we
use sL(ω) = −δd(ω) and

sU(ω) = max
i∈Res(α)

{
α−1i (pmax

i (ω) + τsat − p0i )− Σd(ω)
}
,

as lower and upper bounds (sL, sU), whereas if δd(ω) > 0,
we use sU(ω) = −δd(ω) and

sL(ω) = min
i∈Res(α)

{
α−1i (pmin

i (ω)− τsat − p0i )− Σd(ω)
}
.

C. Computing stochastic gradients for the approximation

We describe how stochastic gradients of the objective func-
tion of Problem (P) are estimated given values of the first-stage
variables and a realization of ω. Given partial derivatives of
the (unique) recourse solution with respect to the first-stage
decisions, we can compute stochastic gradients of the objective
function of the approximation using the chain rule under mild
conditions (see Theorem 7.44 of [13]).

The partial derivatives of the recourse solution with re-
spect to the reserves r+ and r− are identically zero. Partial
derivatives of the solution to the generation levels pi(ω)
with respect to the variables p0 and α are computed by
differentiating Eqns. (6), (9), and (10) and solving the resulting

1In the case study, we set τsat = 10−4(pmax
i (ω)− pmin

i (ω)).
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linear system of sensitivities. Partial derivatives of the phase
angle solution θi(ω) with respect to p0 and α are computed
by differentiating Eqns. (8) and solving the resulting linear
system. We summarize these relationships in Appendix B.

D. Solving the smooth approximation using PSG

We use the projected stochastic gradient (PSG) method
of [9, 10] to obtain stationary solutions to the smooth ap-
proximation2. We argue below that the assumptions of [10]
hold. Assumption (A2) of [10] holds since we assume that
the conditions of Theorem 1 hold. Furthermore, the smooth
saturation function gτ is continuously differentiable with Lip-
schitz continuous gradient. The sensitivities of the recourse
solutions with respect to the first-stage variables are also Lip-
schitz continuous. Hence, the objective function of our smooth
approximation is continuously differentiable with Lipschitz
continuous gradient. Because the first-stage feasible region is
compact, assumption (A3) of [10] also holds and the PSG
method is guaranteed to converge to stationary solutions.

Algorithm 1 presents a basic version of our PSG workflow.
In this algorithm, we use x := (p0, r+, r−, α) as the set of all
first-stage variables, and define X to be the set of x that satisfy
Eqns. (1) to (4). The operator ProjX(y) returns the point in
X that has smallest Euclidean distance to y. For simplicity
the algorithm is described with a fixed step length γ, but we
use a variation of AdaGrad [14] for determining step lengths.

Algorithm 1 PSG algorithm for solving the smooth approx.

1: Input: Initial guess x1 ∈ X , number of iterations T ∈ N,
mini-batch size K ∈ N, and step length γ > 0.

2: for t = 1, · · · , T do
3: for k = 1, · · · ,K do
4: Let ωk be a random observation of ω.
5: Solve Eqns. (6), (8), and (10) to obtain s(ωk) and

pT(ωk) for the given xt and ωk.
6: Solve Eqns. (11)-(14) with ωk, s(ωk), pT(ωk) and

xt and use the chain rule to get a stochastic
gradient ĝk of the objective of (P) at iterate xt.

7: end for
8: Let xt+1 = ProjX

(
xt − γ 1

K

∑K
k=1 ĝk

)
.

9: Estimate the objective of Problem (P) using an inde-
pendent sample of ω, and check termination criteria.

10: end for
11: Output: Iterate with the smallest estimated objective.

IV. ALTERNATIVE MODELS

We compare the solution of the smooth approximation (SA)
with the solutions from two alternative models that deter-
mine candidate first-stage decisions using the affine policy in
Eqn. (5) instead of the saturation model in Eqns. (6) and (10).

2An alternative is to use sample average approximation (SAA) to solve the
smooth approximation, which can also exploit its decomposable structure

1) Conservative Affine Policy (CAP) Model: The first
model we compare against is inspired by [1, 5, 7]. This model
enforces individual generator limits using chance constraints
with maximum violation allowances εgen � 1, thereby avoid-
ing the need to consider saturation effects for the affine policy,
while still using penalty terms to limit line violations.

2) Generator Penalty (GP) Model: The second alterna-
tive we consider does not directly include a constraint on
the violation probability, but rather penalizes the expected
violation of the generator limits by the generation levels
determined by the affine policy (cf. [2]) using the terms
γgen max{0, pi(ω) − pmax

i (ω), pmin
i (ω) − pi(ω)}2, i ∈ G, in

the recourse objective for a penalty coefficient γgen > 0. In
our computational experiments, we investigate whether it is
possible to choose γgen such that the GP model yields good
solutions to the true Problem (P).

Both of these alternative models are solved using sample
average approximation [13] with a nonlinear programming
solver. Appendix C presents these models in greater detail.

V. COMPUTATIONAL EXPERIMENTS

A. Modeling and implementation details

For the generators, we set the lower bound to zero pmin
i (ω) ≡

0, ∀i ∈ G. For the regular generators, p0,L = 0, p0,Ui = pmax
i ,

∀i ∈ R, while wind generators have p0,Ui = E [pmax
i (ω)] +

5σ [pmax
i (ω)], ∀i ∈ W . For the reserve bounds, we set

r+,max = r−,max = p0,U. We assume that all generators
are required to have a positive participation factor such that
Gres = G, with ε = min

{
0.001, 0.01|G|

}
, and we choose

τsat = 10−4(pmax
i (ω) − pmin

i (ω)), i ∈ G. We assume that
the generation limits are wide enough for relatively complete
recourse to hold.

The cost functions for all regular generators ∀i ∈ R are
specified as f1,i(z) = ciz, f2,i(z) = f3,i(z) = cicresz,
where ci represents the generation cost and cres = 1.5 is
a reserve cost factor. For the wind generators, we assume
that the marginal cost is zero, and use f1,i(z) ≡ 0 for the
generation cost functions. For the reserve cost functions, we
set f2,i(z) = f3,i(z) = (mink∈R ck) cwindcresz, ∀i ∈ W ,
where cwind = 0.1 is the relative cost factor for wind
reserves. The penalty functions for the second stage are
specified as q1,i(z) ≡ 0, i.e. the generators are allowed to
deviate from the first-stage generation without a penalty. For
the penalties representing the exceedance of the scheduled
reserve capacities, we set q2,i(z) = γresf2,i(g

+
τpos(z)), and

q3,i(z) = γresf3,i(−g−τpos(z)), ∀i ∈ G, where γres = 10 is the
penalty for demanding reserves beyond the scheduled capacity.
The value τpos = 10−4 is a smoothing parameter, and g+τpos is
the smooth approximation to the (·)+ function defined by:

g+τpos(z) := τpos log
(

1 + exp
( z

τpos

))
,

and g−τpos(z) := −g+τpos(−z) is the smooth approximation to
(z)−. Finally, the line flow penalty is defined as

q4,ij(z) = γline max{0, |z| − δijfmax
ij }2,
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TABLE I: Comparison of the lowest cost solutions with joint line
violation probability ≤ 0.5% for the 6-bus model case1.

Expected First-stage cost Gen. Wind
Model total cost Gen. Res. viol. util. %

SA 3049 2713 115 - 70
CAP 10−3 3505 3188 226 <0.002 45.2
CAP 10−2 3186 2991 126 <0.01 55.9

GP 3043 2689 110 0.069 71.4

TABLE II: Comparison of the lowest cost solutions with joint line
violation probability ≤ 0.5% for the 6-bus model case2.

Expected First-stage cost Gen. Wind
Model total cost Gen. Res. viol. util. %

SA 3546 1514 1675 - 100
CAP 10−3 4446 2797 1127 <0.001 69.1
CAP 10−2 4268 2614 1122 <0.01 76.7

GP 3904 2133 1186 0.567 96.8

where fmax
ij is the (i, j)th line flow limit, δij ≡ 0.95, and

γline > 0 is the line flow penalty coefficient that is varied.
We solve SAAs of the comparison models CAP and GP with

500 scenarios (which can be expressed as convex quadratic
programs) to determine candidate first-stage solutions. We use
a solution from the GP model with γgen = 20 as the initial
guess x1 for our smooth approximation model. The quality of
the solutions obtained using all approaches are evaluated on
the true model (P) (i.e., including reserve saturation) using a
common independent Monte Carlo sample of size 105.

The code and data of the test instances are available
at https://github.com/rohitkannan/DCOPF-reserve-saturation.
Our codes are written in Julia 0.6.2 [15], and use
Gurobi 7.5.2 [16] to solve convex programs through the
JuMP 0.18.2 interface [17]. We use IPOPT 3.12.8 [18] in
situations where Gurobi encounters numerical difficulties. All
computational tests were conducted on a Surface Book 2
laptop running Windows 10 Pro with a 1.90 GHz four core
Intel i7 CPU, 16 GB of RAM.

B. Case Study I: 6-bus system

Our 6-bus example (with |G| = 3) is based on http://motor.
ece.iit.edu/data/6bus Data ES.pdf. We recast ‘generator G2’
as a wind generator, and consider normally distributed loads
and wind generator capacities with average wind output equal
to half the average load. We consider three cases:
case1: wind generators can provide reserves,
case2: wind generators do not provide reserves (but are
allowed to spill wind without cost, with αwind = 0.1ε), and
case3: wind generators are non-dispatchable (i.e., they act
like negative loads).
We assume that the standard deviation of the wind output and
the loads are 10% of the average for the first two cases, but
only 5% of the average for the third case to ensure relatively
complete recourse. For these three cases, we compare the
solution obtained with the smooth approximation, as well as
the solutions from the CAP and GP models.

1) Pareto plots for the three algorithms: To provide a
complete picture of the performance of solutions that can
be obtained from each algorithm, we present Pareto plots
to display the quality of solutions obtained across different
parameter values. To generate the Pareto plot, we do a
parameter sweep for the tuning parameters of each model.
The line violation penalty parameters are changed between
γline = logspace(1, 5, 17) for our smooth approximation
(except for case2, where we use 21 values of γline between
101 and 105), and between γline = logspace(1, 5, 9) for
the GP and CAP models. For the GP model we also do a
parameter sweep for the generator violation penalties with
γgen = logspace(0, 5, 16). For the CAP model, we con-
sider two different violation probabilities for generator chance
constraints, viz., εgen = [10−3, 10−2]. Since the solutions
depend on the samples and are therefore random, we create
five replications for each parameter combination. For each
solution, we calculate the expected cost of power generation
(including cost of reserves and reserve penalties) and the joint
probability that any line flow limit is violated by evaluating
the system behavior based on the true policy (which includes
reserve saturation) on an independent sample. Note that we
do not include any assessment of the generator violation
probability since this probability is zero in the true model.

Fig. 1 shows the Pareto plots for the three different algo-
rithms and the three different cases, with expected generation
cost plotted against the expected joint violation probability for
the line flows. We plot solutions for the smooth approximation
(blue squares), the GP model (red dots) and the CAP model
with two different values for εgen (black circles and crosses).

We observe from the Pareto plots that our smooth approx-
imation always provides nearly non-dominated solutions for
all three cases. The solutions obtained with the GP model are
not concentrated along the Pareto front, as generation violation
penalties that are either too large or too small lead to larger-
than-necessary cost. Solutions from the CAP model provide
a different Pareto front with a larger cost than the smooth
approximations, though the solutions coincide with the smooth
approximation for smaller values of the violation probability.

Beyond these general behaviors, the models compare dif-
ferently between different cases. In case1, careful parameter
tuning allows the GP model to find points along the Pareto
curve. In case2, there is a gap between the lowest cost solu-
tions obtained with the GP model and the Pareto curve found
with the smooth approximation. The smooth approximation is
able to find lower cost solutions when the probability of line
violations is not set too low. The lack of data points in the
Pareto curve for the smooth approximation model in case2
between line violation probabilities of 6× 10−4 and 2× 10−3

is a result of using a linear weighting approach for balancing
the expected generation and violation costs for the nonconvex
Problem (P), see Chapter 3 of [19]. In case3, the solutions
of all three algorithms cluster along the Pareto front.

2) Detailed comparison of differences: To analyze the
cause of these differences, we investigate some of the solutions
in more detail. For each algorithm and cases 1 and 2, we
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Fig. 1: (Left to right) Pareto plots for the 6-bus system generated using five replicates for case1, case2, and case3.
Blue squares: Smooth approximation Red dots: GP solution Black crosses: CAP 10−3 Black circles: CAP 10−2

list the results for the lowest cost solution with a joint line
violation probability ≤ 0.5% in Tables I and II. We list
the total expected cost, the first-stage scheduled generation
and reserve capacity costs, the out-of-sample joint violation
probabilities of the lines, and the joint violation probability of
the generators if we would have considered an affine control
policy (only calculated for the CAP and GP models). We also
list the expected utilization of wind energy, as a percentage of
total available wind power.

In case1 we observe that the solutions from GP and
the smooth approximation have very similar total costs and
utilization of the wind energy. The smooth approximation
invests more in both generation and reserve capacity in the
first stage, which is balanced by paying lower penalties in
the second stage. Interestingly, the optimal choice of tuning
parameters for the GP solution leads to a relatively high
violation probability for the generators at 6.9%. If we enforce
a lower violation probability, as is done in the CAP model
and has typically been done in literature (see e.g. [1]), the
total expected cost increases significantly and the utilization
of wind energy drops.

For case2, where wind generators are not allowed to
provide reserves, we observe that the total expected cost is
significantly lower for the smooth approximation than for
both the GP and CAP models. The smooth approximation has
a lower first-stage generation cost (indicating high dispatch
levels for the cheap wind power), but invests more in procuring
reserves (that can make up for overestimates in the wind
generation). This leads to full utilization of the available wind
power. In comparison, the GP model schedules less wind
power in the first stage, leading to a higher cost and lower
wind utilization. Interestingly, the affine policy in the best
GP solution violates the generator limits with more than 50%
probability. This also explains why the CAP solutions, where
the generation violation probability is explicitly limited, leads
to much higher total expected cost (and much lower wind
power utilization) than the other two models.

Finally, we do not compare the solutions in case3 as they
are very similar for all three algorithms. In this case, the
solutions balance the cost of scheduling more power from the
less expensive generator with paying penalties for violating
the line constraints. The reserve activation is happening at the
more expensive generator, which is far away from saturation.

The generators never violate their limits even with an affine
control policy and the models are therefore the same.

C. Case Study II: 118-bus system

In the second part of our case study, we consider the more
realistic test case based on the IEEE 118-bus system from
http://motor.ece.iit.edu/data/JEAS IEEE118.doc with modifi-
cations suggested in [2], including the addition of 25 wind
generators to the 54 regular generators, increasing the average
demand by 50%, and reducing the line flow limits by 25%. We
again consider normally distributed loads and wind generator
capacities, and consider five different levels of wind penetra-
tion: average wind output = 25%, 50%, 75%, 100%, or 125%
of the average system load. To obtain appropriate parameter
values for the algorithms, we run a similar parameter sweep as
for the 6-bus test case with modified γgen = logspace(0, 4, 9)
and εgen = [10−5, 10−4]. It takes roughly 1.5 minutes on av-
erage to solve the GP and CAP models and roughly 7 minutes
on average to solve the smooth approximation model for one
instance. We then pick the solution with lowest expected total
cost and joint line flow violation probability ≤ 0.5% for each
algorithm and each wind level penetration. The expected total
cost, expected wind utilization and expected fraction of total
system load served by wind power is calculated using a Monte
Carlo simulation with 105 samples. The results are plotted in
Fig. 2, and are also described in Tables III to VII.

As can be seen from Fig. 2, the smooth approximation
outperforms the other methods in all aspects, at all wind
penetration levels. The cost is lower, the wind utilization is
higher and more load is served by the wind generators. The so-
lution obtained by a properly tuned affine GP model achieves
results that are quite similar to the smooth approximation,
although the relative cost difference is quite high. At 125%
wind penetration levels, the expected cost is 30% higher for the
GP solution. Both of the CAP methods perform significantly
worse than the smooth approximation.

VI. CONCLUSION AND FUTURE WORK

We propose a stochastic DC optimal power flow model
with reserve saturation. Specifically, our model assumes that
generators follow an affine control policy until they reach a
generation limit, at which point they operate at that limit.
The model is a two-stage stochastic program with nonconvex,

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



25 50 75 100 125

Wind penetration [%]

0

2

4

6

E
x

p
e
c

te
d

 t
o

ta
l 
c

o
s
t 

(i
n

c
l.
 p

e
n

.)

10
4

25 50 75 100 125

Wind penetration [%]

50

60

70

80

90

100

E
x
p

e
c
te

d
 w

in
d

 u
ti

li
z
a
ti

o
n

 [
%

]

25 50 75 100 125

Wind penetration [%]

0

20

40

60

80

100

E
x
p

e
c
te

d
 %

 l
o

a
d

 f
ro

m
 w

in
d

Fig. 2: Summary of solutions for the different models in the 118-bus case with varying wind penetration levels.
Blue squares: Smooth approximation Red triangles: GP solution Black crosses: CAP 10−5 Black circles: CAP 10−4

TABLE III: Comparison of the lowest cost solutions with joint line
viol. prob.≤ 0.5% for the 118-bus model with 25% wind penetration.

Expected First-stage cost Gen. Wind
Model total cost Gen. Res. viol. util. %

SA 50803 50000 364 - 93.6
CAP 10−5 57760 57487 164 <0.01 55.3
CAP 10−4 56587 56304 164 <0.01 61.1

GP 51199 50470 161 0.997 91.0

TABLE IV: Comparison of the lowest cost solutions with joint line
viol. prob.≤ 0.5% for the 118-bus model with 50% wind penetration.

Expected First-stage cost Gen. Wind
Model total cost Gen. Res. viol. util. %

SA 33797 32567 622 - 95.4
CAP 10−5 46594 46342 164 <0.01 56.8
CAP 10−4 44610 44358 164 <0.01 62.3

GP 35872 35444 180 0.96 87.2

TABLE V: Comparison of the lowest cost solutions with joint line
viol. prob.≤ 0.5% for the 118-bus model with 75% wind penetration.

Expected First-stage cost Gen. Wind
Model total cost Gen. Res. viol. util. %

SA 18503 16947 817 - 93.8
CAP 10−5 36288 36029 164 <0.01 57.1
CAP 10−4 33367 33103 164 <0.02 62.6

GP 21882 21432 177 0.89 84.7

TABLE VI: Comparison of the lowest cost solutions with joint line
viol. prob. ≤ 0.5% for the 118-bus model with 100% wind pen.

Expected First-stage cost Gen. Wind
Model total cost Gen. Res. viol. util. %

SA 8946 7865 458 - 84.1
CAP 10−5 26104 25840 164 <0.02 57.2
CAP 10−4 22422 22158 164 <0.02 62.5

GP 11205 10712 161 0.82 79.6

TABLE VII: Comparison of the lowest cost solutions with joint line
viol. prob. ≤ 0.5% for the 118-bus model with 125% wind pen.

Expected First-stage cost Gen. Wind
Model total cost Gen. Res. viol. util. %

SA 4863 3886 420 - 74.0
CAP 10−5 17028 16740 164 <0.01 56.4
CAP 10−4 13354 13053 164 <0.01 60.9

GP 6378 5840 161 0.83 70.7

nonsmooth second stage constraints, and we propose a stochas-
tic approximation method to solve a smooth approximation.
We empirically observe that our model yields solutions that
outperform those obtained from a model that constrains the
affine control policy to rarely violate generation limits. On
the other hand, using a model that penalizes expected violation
of generator limits can sometimes yield competitive solutions
with a well-tuned choice of the penalty parameter.

Extensions to our model that would be interesting to in-
vestigate in future work include constraining the probability
or expected violation of line limits rather than penalizing
violation of line limits in the objective, and using an AC power
flow model in place of the DC model.
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[18] A. Wächter and L. T. Biegler. On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming.
Mathematical programming, 106(1):25–57, 2006.

[19] M. Ehrgott. Multicriteria optimization. Springer, 2006.

APPENDIX A
PROOF OF THEOREM 1

If Σd(ω) 6∈ DF (p0, α, ω), then Eqns. (6), (7), and (9) are
inconsistent since Eqns. (6) and (7) together imply∑

i∈Res(α)

pmin
i (ω) +

∑
j 6∈Res(α)

p̄0j (ω)−
∑
k∈D

dk

≤
∑
i∈G

pi(ω)−
∑
k∈D

dk

≤
∑

i∈Res(α)

pmax
i (ω) +

∑
j 6∈Res(α)

p̄0j (ω)−
∑
k∈D

dk,

which makes the satisfaction of Eqn. (9) impossible.

We now show that the system of equations (6), (7), and (9)
has a solution whenever Σd(ω) ∈ DF (p0, α, ω). For a chosen
value of the slack reserves s(ω), denote the value of pi(ω)
obtained using Eqns. (6) and (7) by p̂i(s) (we omit dependence
on the first-stage variables and ω for simplicity). Note that
p̂i(s) is a monotonically nondecreasing continuous function of
s for each i ∈ G, which implies that

∑
i∈G p̂i(s) is a monoton-

ically nondecreasing continuous function of s. Furthermore,
we have from Eqns. (6) and (7) that generators with a
nonzero participation factor will eventually hit their bounds for
small/large enough chosen values of s, i.e., there exists M > 0
large enough for which p̂i(−M) = pmin

i (ω) and p̂i(M) =
pmax
i (ω), ∀i ∈ Res(α), which implies

∑
i∈G p̂i(−M) =∑

i∈Res(α) p
min
i (ω) +

∑
j 6∈Res(α) p̄

0
j (ω) and

∑
i∈G p̂i(M) =∑

i∈Res(α) p
max
i (ω) +

∑
j 6∈Res(α) p̄

0
j (ω). From the intermedi-

ate value theorem applied to
∑
i∈G p̂i(·), there exists ŝ ∈

[−M,M ] such that
∑
i∈G p̂i(ŝ) =

∑
j∈D

[
dj + d̃j(ω)

]
for

any Σd(ω) ∈ DF (p0, α, ω). Therefore, the system of equa-
tions (6), (7), and (9) has a solution for the variables(
pT
i (ω), pi(ω), s(ω)

)
whenever Σd(ω) ∈ DF (p0, α, ω).

When Σd(ω) ∈ int(DF (p0, α, ω)), we have from Eqn. (9)
that there exists a generator that has not hit its generation lim-
its, i.e., ∃j ∈ Res(α) such that pmin

j (ω) < pj(ω) < pmax
j (ω)

at a solution to Eqns. (6), (7), and (9). This implies that
the sum

∑
i∈G p̂i(·) is monotonically (strictly) increasing in

a neighborhood of s(ω) around the above solution, which
establishes its uniqueness since

∑
i∈G p̂i(s) is a monotonically

nondecreasing continuous function of s. The argument for the
‘only if’ part is similar.

APPENDIX B
CALCULATION OF PARTIAL DERIVATIVES

The linear system below is solved to obtain the partial
derivatives of the recourse solution with respect to the first-
stage decision variable q, where q is a placeholder for either
p0l or αl, l ∈ G:

∂pT
i

∂q
(ω) =

∂p0i
∂q

+ (s(ω) + Σd(ω))
∂αi
∂q

+ αi
∂s

∂q
(ω), (11)

∂pi
∂q

(ω) =
∂gτsat

∂pT
i

(pT
i (ω); pmin

i (ω), pmax
i (ω))

∂pT
i

∂q
(ω), (12)∑

k∈G

∂pk
∂q

(ω) = 0,
∂θ1
∂q

(ω) = 0 (13)

∑
j : (i,j)∈E

βij

[
∂θi
∂q

(ω)− ∂θj
∂q

(ω)

]
=
∂pi
∂q

(ω). (14)

APPENDIX C
DETAILS OF THE FORMULATIONS

We explicitly write out the three formulations considered
for the computational experiments below (parameter settings
are listed in Sec. V).

Smooth approximation (SA):

min
p0,r+,

r−,α

∑
i∈G

[
cip

0
i + c̄i

(
r+i + r−i

)]
+Q1(p0, r+, r−, α)

s.t. Constraints (1) to (4),

where c̄i = cicres, for i ∈ R, and c̄i = cwindcres(mink∈R ck),
for i ∈ W , ci = 0, ∀i ∈ W , Q1(p0, r+, r−, α) =
Eω
[
q1(p0, r+, r−, α, ω)

]
denotes the expected second-stage

costs with q1(p0, r+, r−, α, ω) :=

min
p(ω),pT(ω),

s(ω),θ(ω)

∑
i∈G

γresc̄ig
+
τpos(pi(ω)− p0i − r+i )+

∑
i∈G

γresc̄ig
+
τpos(p0i − pi(ω)− r−i )+∑

(i,j)∈E

max
{

0, |βij [θi(ω)− θj(ω)]| − δijfmax
ij

}2
s.t. Constraints (6), (8), and (10).

Conservative affine policy (CAP) model

min
p0,r+,

r−,α

∑
i∈G

[
cip

0
i + c̄i

(
r+i + r−i

)]
+Q2(p0, r+, r−, α)

s.t. Constraints (1) to (4),

P
{
p0i + αiΣd(ω) ≥ pmin

i (ω)
}
≥ 1− εgen, ∀i ∈ G,

P
{
p0i + αiΣd(ω) ≤ pmax

i (ω)
}
≥ 1− εgen, ∀i ∈ G,

where Q2(p0, r+, r−, α) = Eω
[
q2(p0, r+, r−, α, ω)

]
denotes
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the expected second-stage costs with q2(p0, r+, r−, α, ω) :=

min
p(ω),θ(ω)

∑
i∈G

γresc̄i
((
pi(ω)− p0i − r+i

)
+

+
(
p0i − pi(ω)− r−i

)
+

)
+∑

(i,j)∈E

max
{

0, |βij [θi(ω)− θj(ω)]| − δijfmax
ij

}2
s.t. Constraints (5) and (8).

Generator penalty (GP) model

min
p0,r+,

r−,α

∑
i∈G

[
cip

0
i + c̄i

(
r+i + r−i

)]
+Q3(p0, r+, r−, α)

s.t. Constraints (1) to (4),

where Q3(p0, r+, r−, α) = Eω
[
q3(p0, r+, r−, α, ω)

]
denotes

the expected second-stage costs with q3(p0, r+, r−, α, ω) :=

min
p(ω),θ(ω)

∑
i∈G

γresc̄i
((
pi(ω)− p0i − r+i

)
+

+
(
p0i − pi(ω)− r−i

)
+

)
+∑

(i,j)∈E

max
{

0, |βij [θi(ω)− θj(ω)]| − δijfmax
ij

}2
+

∑
i∈G

γgen max
{

0, pi(ω)− pmax
i (ω), pmin

i (ω)− pi(ω)
}2

s.t. Constraints (5) and (8).
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