Residuals-Based Distributionally Robust Optimization with Covariate Information
arXiv:2012.01088

Rohit Kannan
Center for Nonlinear Studies Postdoctoral Fellow
Los Alamos National Laboratory

Robust Optimization Webinar on April 8, 2021

Joint work with Güzin Bayraksan and Jim Luedtke

Funding: DOE (MACSER Project)
Outline

1. Introduction and Motivation
 - Problem Setup
 - Example Applications
 - Solution Approaches

2. SAA with Covariate Information

3. DRO with Covariate Information

4. Extensions
Traditional Data-Driven Stochastic Programming

- Traditional SP: minimize expected system cost assuming feasible region \mathcal{Z} and distribution of Y known

$$\min_{z \in \mathcal{Z}} \mathbb{E}_Y [c(z, Y)]$$

- Data-driven SP: have access to samples $\{y_i\}_{i=1}^n$ of Y

$$\min_{z \in \mathcal{Z}} \mathbb{E}_Y [c(z, Y)] \approx \min_{z \in \mathcal{Z}} \frac{1}{n} \sum_{i=1}^n c(z, y_i) \quad \text{(SAA)}$$

- Sample Average Approximation theory: as sample size $n \to \infty$, optimal value and solutions of (SAA) converge to those of true SP at rate $O_p(n^{-\frac{1}{2}})$
Traditional Data-Driven Stochastic Programming

- Traditional SP: minimize expected system cost assuming feasible region \mathcal{Z} and distribution of Y known
 \[
 \min_{z \in \mathcal{Z}} \mathbb{E}_Y [c(z, Y)]
 \]

- Data-driven SP: have access to samples $\{y^i\}_{i=1}^n$ of Y
 \[
 \min_{z \in \mathcal{Z}} \mathbb{E}_Y [c(z, Y)] \approx \min_{z \in \mathcal{Z}} \frac{1}{n} \sum_{i=1}^n c(z, y^i) \quad \text{(SAA)}
 \]

- Sample Average Approximation theory: as sample size $n \to \infty$, optimal value and solutions of (SAA) converge to those of true SP at rate $O_p(n^{-1/2})$
Example: Mean-Risk Portfolio Optimization

\[
\min_{z \in \mathcal{Z}} \mathbb{E}_Y [-Y^T z] + \rho \text{CVaR}_\beta (-Y^T z),
\]

where \(\mathcal{Z} := \{ z \in \mathbb{R}^d_z : \sum_i z_i = 1 \} \).

- \(z_i \): fraction of capital invested in asset \(i \)
- \(Y_i \): uncertain net return of asset \(i \)
- \(\text{CVaR}_\beta \approx \) average of the 100\((1 - \beta) \)% worst return outcomes
- \(\rho \geq 0 \) and \(\beta \in [0, 1) \): risk parameters (e.g., \(\rho = 10, \beta = 0.8 \))
Stochastic Programming with Covariate Information

- Use covariates X to inform distribution of random vector Y
 - Covariates also called *features* or *side information*
- When making decision z, we observe a *new* covariate $X = x$
- **Goal:** solve the conditional SP

$$\min_{z \in Z} \mathbb{E}[c(z, Y) \mid X = x]$$
Example Application: Power Grid Scheduling

- **Decisions \(z \):** Generator schedules
- **Uncertain Parameters \(Y \):** Load, Renewable energy outputs
- **Covariates \(X \):** Weather observations, Time of day/Season
Example Application: Production Planning

- **Decisions** z: Production and Inventory levels
- **Uncertain Parameters** Y: Product demands
- **Covariates** X: Seasonality, Web search results

Image credit: AIDIAONE
• When making decision z, we observe a new covariate $X = x$

• Goal: solve the conditional SP

$$\min_{z \in Z} \mathbb{E}[c(z, Y) \mid X = x]$$
• When making decision z, we observe a new covariate $X = x$

• **Goal:** solve the conditional SP

$$\min_{z \in \mathcal{Z}} \mathbb{E}[c(z, Y) \mid X = x]$$

• Assume we have uncertain parameter and covariate data pairs (not necessarily i.i.d.)

$$\mathcal{D}_n := \{(y^i, x^i)\}_{i=1}^n$$

• How to construct data-driven approximation to conditional SP?
• When making decision z, we observe a new covariate $X = x$

• **Goal:** solve the conditional SP

$$\min_{z \in \mathcal{Z}} \mathbb{E} [c(z, Y) \mid X = x]$$

• Assume we have uncertain parameter and covariate data pairs (not necessarily i.i.d.)

$$\mathcal{D}_n := \{(y^i, x^i)\}_{i=1}^n$$

• How to construct data-driven approximation to conditional SP?

1. Learn: predict Y given $X = x$
2. Optimize: integrate learning into optimization (with errors)
Traditional Integrated Learning and Optimization

1. Use data to train your favorite ML prediction model:

 $$\hat{f}_n(\cdot) \in \arg \min_{f(\cdot) \in F} \sum_{i=1}^{n} \ell(f(x^i), y^i) + \rho(f)$$

2. Given observed covariate $X = x$, use point prediction within deterministic optimization model

 $$\min_{z \in Z} c(z, \hat{f}_n(x))$$
Traditional Integrated Learning and Optimization

1. Use data to train your favorite ML prediction model:

\[
\hat{f}_n(\cdot) \in \arg \min_{f(\cdot) \in F} \sum_{i=1}^{n} \ell(f(x^i), y^i) + \rho(f)
\]

2. Given observed covariate \(X = x\), use point prediction within deterministic optimization model

\[
\min_{z \in Z} c(z, \hat{f}_n(x))
\]

- Modular: separate learning and optimization steps
- Expect to work well if (and likely only if) prediction is accurate
Improved Integrated Learning and Optimization

Approach 1: Modify the learning step

• Change loss function in ML training step to reflect use of prediction within optimization model

• More challenging training problem + less modular

1Kao et al. (2009); Donti et al. (2017); Elmachtoub and Grigas (2017); . . .

2Ban et al. (2018); Bertsimas and Kallus (2020); Sen and Deng (2018); Bertsimas et al. (2019); Esteban-Pérez and Morales (2020); . . .

3Bertsimas and Kallus (2020); Ban and Rudin (2018); Bazier-Matte and Delage (2020); . . .
Improved Integrated Learning and Optimization

Approach 1: Modify the learning step\(^1\)

- Change loss function in ML training step to reflect use of prediction within optimization model
- More challenging training problem + less modular

Approach 2 (this work): Modify the optimization step\(^2\)

- Change optimization model to reflect uncertainty in prediction

\(^1\)Kao et al. (2009); Donti et al. (2017); Elmachtoub and Grigas (2017); ...
\(^2\)Ban et al. (2018); Bertsimas and Kallus (2020); Sen and Deng (2018); Bertsimas et al. (2019); Esteban-Pérez and Morales (2020); ...
\(^3\)Bertsimas and Kallus (2020); Ban and Rudin (2018); Bazier-Matte and Delage (2020); ...
Improved Integrated Learning and Optimization

Approach 1: Modify the learning step\(^1\)
- Change loss function in ML training step to reflect use of prediction within optimization model
- More challenging training problem + less modular

Approach 2 (this work): Modify the optimization step\(^2\)
- Change optimization model to reflect uncertainty in prediction

Approach 3: Direct solution learning\(^3\)
- Attempt to directly learn a mapping from \(x\) to a solution \(z\)
- Handling constraints and large dimensions of \(z\) is challenging

\(^1\)Kao et al. (2009); Donti et al. (2017); Elmachtoub and Grigas (2017); ...
\(^2\)Ban et al. (2018); Bertsimas and Kallus (2020); Sen and Deng (2018); Bertsimas et al. (2019); Esteban-Pérez and Morales (2020); ...
\(^3\)Bertsimas and Kallus (2020); Ban and Rudin (2018); Bazier-Matte and Delage (2020); ...
Outline

1 Introduction and Motivation

2 SAA with Covariate Information
 Formulations
 Sampling of Convergence Theory

3 DRO with Covariate Information

4 Extensions
Given

• Joint observations $\mathcal{D}_n := \{(y^i, x^i)\}_{i=1}^n$ of random vectors Y, X
• New random covariate observation $X = x$ (current context)

Want to solve

$$v^*(x) := \min_{z \in Z} \mathbb{E} [c(z, Y) \mid X = x]$$
Problem Setup

Given

- Joint observations $D_n := \{(y^i, x^i)\}_{i=1}^n$ of random vectors Y, X
- New random covariate observation $X = x$ (current context)

Want to solve

$$v^*(x) := \min_{z \in Z} \mathbb{E}[c(z, Y) \mid X = x]$$

Assume (for now)

- True model: $Y = f^*(X) + \varepsilon$ with X and ε independent

$$\implies v^*(x) \equiv \min_{z \in Z} \mathbb{E}_\varepsilon [c(z, f^*(x) + \varepsilon)]$$

- We know a function class \mathcal{F} such that $f^* \in \mathcal{F}$
Empirical Residuals-based Sample Average Approximation

Approach suggested in Sen and Deng (2018); analyzed for a specific application in Ban et al. (2018)

1. Estimate f^* using your favorite ML method $\Rightarrow \hat{f}_n$

Compute empirical residuals $\hat{\varepsilon}_i^n := y_i - \hat{f}_n(x_i), i \in [n]$

Use $\{\hat{f}_n(x) + \hat{\varepsilon}_i^n\}_{i=1}^n$ as proxy for samples of Y given $X = \hat{z} \in \text{arg min } z \in \mathbb{Z} \frac{1}{n} \sum_{i=1}^n c(z, \hat{f}_n(x) + \hat{\varepsilon}_i^n)$ (ER-SAA)

• Modular like traditional approach
• Our contribution: general convergence analysis
• Improvements when sample size is small?
Empirical Residuals-based Sample Average Approximation

Approach suggested in Sen and Deng (2018); analyzed for a specific application in Ban et al. (2018)

1. Estimate f^* using your favorite ML method $\Rightarrow \hat{f}_n$

Compute empirical residuals $\hat{\varepsilon}_n^i := y^i - \hat{f}_n(x^i), i \in [n]$
Empirical Residuals-based Sample Average Approximation

Approach suggested in Sen and Deng (2018); analyzed for a specific application in Ban et al. (2018)

1. Estimate f^* using your favorite ML method $\Rightarrow \hat{f}_n$

 Compute empirical residuals $\hat{\epsilon}_i^n := y^i - \hat{f}_n(x^i), i \in [n]$

2. Use $\{\hat{f}_n(x) + \hat{\epsilon}_i^n\}_{i=1}^n$ as proxy for samples of Y given $X = x$

 $\hat{z}_{ER}^n(x) \in \arg\min_{z \in Z} \frac{1}{n} \sum_{i=1}^n c(z, \hat{f}_n(x) + \hat{\epsilon}_i^n)$ \hspace{1cm} (ER-SAA)
Empirical Residuals-based Sample Average Approximation

Approach suggested in Sen and Deng (2018); analyzed for a specific application in Ban et al. (2018)

1. Estimate f^* using your favorite ML method $\Rightarrow \hat{f}_n$

 Compute empirical residuals $\hat{\varepsilon}_n^i := y^i - \hat{f}_n(x^i)$, $i \in [n]$

2. Use $\{\hat{f}_n(x) + \hat{\varepsilon}_n^i\}_{i=1}^n$ as proxy for samples of Y given $X = x$

 $\hat{z}_n^{ER}(x) \in \arg \min_{z \in \mathcal{Z}} \frac{1}{n} \sum_{i=1}^n c(z, \hat{f}_n(x) + \hat{\varepsilon}_n^i)$ (ER-SAA)

- Modular like traditional approach
- Our contribution: general convergence analysis
Empirical Residuals-based Sample Average Approximation

Approach suggested in Sen and Deng (2018); analyzed for a specific application in Ban et al. (2018)

1. Estimate f^* using your favorite ML method $\Rightarrow \hat{f}_n$

Compute empirical residuals $\hat{\varepsilon}_i^n := y^i - \hat{f}_n(x^i)$, $i \in [n]$

2. Use $\{\hat{f}_n(x) + \hat{\varepsilon}_i^n\}_{i=1}^n$ as proxy for samples of Y given $X = x$

$$\hat{z}^{ER}_n(x) \in \arg \min_{z \in \mathcal{Z}} \frac{1}{n} \sum_{i=1}^n c(z, \hat{f}_n(x) + \hat{\varepsilon}_i^n) \quad \text{(ER-SAA)}$$

- Modular like traditional approach
- Our contribution: general convergence analysis
- Improvements when sample size is small?

K., Bayraksan, and Luedtke. Data-driven sample average approximation with covariate information. Submitted

Rohit Kannan Residuals-based DRO with Covariate Information
New Small Sample Variant of ER-SAA

Mitigate effects of overfitting by using *leave-one-out residuals*

1. Estimate f^* separately with each data point i left out (leave-one-out regression) $\Rightarrow \hat{f}_{-i}(\cdot)$ for $i \in [n]$

K., Bayraksan, and Luedtke. Data-driven sample average approximation with covariate information. Submitted
New Small Sample Variant of ER-SAA

Mitigate effects of overfitting by using *leave-one-out residuals*

1. Estimate f^* separately with each data point i left out (leave-one-out regression) $\Rightarrow \hat{f}_{-i}(\cdot)$ for $i \in [n]$

Compute leave-one-out residuals $\hat{e}_n^i := y^i - \hat{f}_{-i}(x^i)$, $i \in [n]$
New Small Sample Variant of ER-SAA

Mitigate effects of overfitting by using leave-one-out residuals

1. Estimate f^* separately with each data point i left out (leave-one-out regression) ⇒ $\hat{f}_{-i}(\cdot)$ for $i \in [n]$

Compute leave-one-out residuals $\hat{\varepsilon}_n^i := y^i - \hat{f}_{-i}(x^i)$, $i \in [n]$

2. Use $\{\hat{f}_n(x) + \hat{\varepsilon}_n^i\}_{i=1}^n$ or $\{\hat{f}_{-i}(x) + \hat{\varepsilon}_n^i\}_{i=1}^n$ as proxy for samples of Y given $X = x$

$$\hat{z}_n^J(x) \in \arg \min_{z \in \mathcal{Z}} \frac{1}{n} \sum_{i=1}^n c(z, \hat{f}_n(x) + \hat{\varepsilon}_n^i) \quad (\text{J-SAA})$$

Inspired by Jackknife methods (Barber et al., 2019)
New Small Sample Variant of ER-SAA

Mitigate effects of overfitting by using leave-one-out residuals

1. Estimate f^* separately with each data point i left out (leave-one-out regression) $\Rightarrow \hat{f}_{-i}(\cdot)$ for $i \in [n]$

 Compute leave-one-out residuals $\hat{\varepsilon}_n^i := y^i - \hat{f}_{-i}(x^i), \ i \in [n]$

2. Use $\{\hat{f}_n(x) + \hat{\varepsilon}_n^i\}_{i=1}^n$ or $\{\hat{f}_{-i}(x) + \hat{\varepsilon}_n^i\}_{i=1}^n$ as proxy for samples of Y given $X = x$

\[
\hat{z}_n^J(x) \in \arg \min_{z \in Z} \frac{1}{n} \sum_{i=1}^n c(z, \hat{f}_n(x) + \hat{\varepsilon}_n^i) \quad \text{(J-SAA)}
\]

Inspired by Jackknife methods (Barber et al., 2019)

This talk: DRO formulation around (ER-SAA) as alternative to (J-SAA)
A Sampling of ER-SAA Theory

\(\hat{\nu}^*(x) = \min_{z \in \mathcal{Z}} \mathbb{E}_\varepsilon [c(z, f^*(x) + \varepsilon)]\)

= optimal value of true conditional SP

\(\hat{z}_{ER}^n(x) = \text{ER-SAA solution}\)

Asymptotic optimality: the out-of-sample cost of data-driven solutions approaches the optimal value of the true conditional SP as the sample size increases

\[\mathbb{E}_\varepsilon [c(\hat{z}_{ER}^n(x), f^*(x) + \varepsilon)] \overset{P}{\rightarrow} \nu^*(x)\]
A Sampling of ER-SAA Theory

\[\nu^*(x) = \min_{z \in \mathcal{Z}} \mathbb{E}_\epsilon [c(z, f^*(x) + \epsilon)] \]

= optimal value of true conditional SP

\[\hat{z}^{ER}_n(x) = \text{ER-SAA solution} \]

Asymptotic optimality: the out-of-sample cost of data-driven solutions approaches the optimal value of the true conditional SP as the sample size increases

\[\mathbb{E}_\epsilon [c(\hat{z}^{ER}_n(x), f^*(x) + \epsilon)] \xrightarrow{p} \nu^*(x) \]

Setting: two-stage stochastic Mixed-Integer Linear Programs

\[\min_{z \in \mathcal{Z}} c^T z + \mathbb{E} [Q(z, Y) \mid X = x], \]

where \[Q(z, Y) := \min_{\nu \in \mathbb{R}^d_+} \left\{ q^T \nu : W \nu = h(Y) - T(Y)z \right\} \]

See http://www.optimization-online.org/DB_HTML/2020/07/7932.html for more theory + numerical experiments
Rate of Convergence of ER-SAA Solutions

Assumption: There is a constant $r \in (0, 1]$ such that the regression procedure satisfies

- Pointwise error rate: $\| f^*(x) - \hat{f}_n(x) \|^2 = O_p(n^{-r})$
- Mean-squared estimation error rate:

$$\frac{1}{n} \sum_{i=1}^{n} \| f^*(x^i) - \hat{f}_n(x^i) \|^2 = O_p(n^{-r})$$
Rate of Convergence of ER-SAA Solutions

Assumption: There is a constant $r \in (0, 1]$ such that the regression procedure satisfies

- Pointwise error rate: $\| f^*(x) - \hat{f}_n(x) \|^2 = O_p(n^{-r})$
- Mean-squared estimation error rate:

$$\frac{1}{n} \sum_{i=1}^{n} \| f^*(x^i) - \hat{f}_n(x^i) \|^2 = O_p(n^{-r})$$

- OLS regression, Lasso satisfy assumption with $r = 1$
- CART, RF regression satisfy assumption with $r = \frac{O(1)}{\dim(X)}$
Rate of Convergence of ER-SAA Solutions

Assumption: There is a constant \(r \in (0, 1] \) such that the regression procedure satisfies

- **Pointwise error rate:** \(\| f^*(x) - \hat{f}_n(x) \|^2 = O_p(n^{-r}) \)
- **Mean-squared estimation error rate:**

\[
\frac{1}{n} \sum_{i=1}^{n} \| f^*(x^i) - \hat{f}_n(x^i) \|^2 = O_p(n^{-r})
\]

- OLS regression, Lasso satisfy assumption with \(r = 1 \)
- CART, RF regression satisfy assumption with \(r = \frac{O(1)}{\dim(X)} \)

Informal Theorem (Rate of Convergence)

Under the above assumptions, ER-SAA solution \(\hat{z}_n^{ER}(x) \) satisfies

\[
\mathbb{E}_\epsilon \left[c(\hat{z}_n^{ER}(x), f^*(x) + \epsilon) \right] = v^*(x) + O_p(n^{-r/2})
\]
Outline

1. Introduction and Motivation

2. SAA with Covariate Information

3. DRO with Covariate Information
 Formulations
 Convergence Theory
 Numerical Experiments

4. Extensions
Distributionally robust optimization (DRO)

- Minimize worst-case expected cost over a set of distributions

\[\hat{z}_{n}^{DRO}(x) \in \arg \min_{z \in Z} \max_{Q \in \hat{P}_{n}(x)} \mathbb{E}_{Y \sim Q}[c(z, Y)] \]

\[\hat{P}_{n}(x) = \text{“confidence region” for distribution of } Y \text{ given } X = x \]
Distributionally robust optimization (DRO)

• Minimize worst-case expected cost over a set of distributions

\[\hat{z}_{n}^{DRO}(x) \in \arg \min_{z \in Z} \max_{Q \in \hat{P}_{n}(x)} \mathbb{E}_{Y \sim Q}[c(z, Y)] \]

\(\hat{P}_{n}(x) = \text{“confidence region” for distribution of } Y \text{ given } X = x \)

• If \(\hat{P}_{n}(x) \) only comprises the ER-SAA distribution

\[\hat{P}_{n}^{ER}(x) := \frac{1}{n} \sum_{i=1}^{n} \delta_{\hat{f}_{n}(x) + \hat{\epsilon}_{n}} \]

then recover the ER-SAA solution

• **Motivation**: DRO regularizes small sample ER-SAA, yielding solutions with better out-of-sample performance
Empirical Residuals-based DRO (ER-DRO)

Given ambiguity set $\hat{P}_n(x)$ centered at $\hat{P}_n^{ER}(x)$, solve

$$
\hat{z}_n^{DRO}(x) \in \arg \min_{z \in Z} \sup_{Q \in \hat{P}_n(x)} \mathbb{E}_{Y \sim Q}[c(z, Y)]
$$

Examples of ambiguity sets $\hat{P}_n(x)$:

- **Wasserstein ambiguity sets of order $p \in [1, +\infty)$:**

 $$
 \hat{P}_n(x) := \{ \text{distributions } Q \text{ such that the } p\text{-Wasserstein distance between } Q \text{ and } \hat{P}_n^{ER}(x) \leq \zeta_n(x) \}
 $$

- **Other ambiguity sets based on phi-divergences, sample robust optimization, ...**
Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level $\alpha \in (0, 1)$, there exists a constant $\kappa_{p,n}(\alpha, x) > 0$ such that the regression procedure satisfies

$$
\mathbb{P}\{ \| f^*(x) - \hat{f}_n(x) \|^p > \kappa_{p,n}^{p}(\alpha, x) \} \leq \alpha,
$$

and

$$
\mathbb{P}\left\{ \frac{1}{n} \sum_{i=1}^{n} \| f^*(x^i) - \hat{f}_n(x^i) \|^p > \kappa_{p,n}^{p}(\alpha, x) \right\} \leq \alpha.
$$

Example: holds for Wasserstein order $p = 2$ and $\kappa_{2,n}(\alpha, x) = O\left(\frac{n - 1}{\log(\alpha - 1)}\right)$. \hfill \Box
Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level $\alpha \in (0, 1)$, there exists a constant $\kappa_{p,n}(\alpha, x) > 0$ such that the regression procedure satisfies

$$
\mathbb{P}\left\{ \|f^*(x) - \hat{f}_n(x)\|^p > \kappa_{p,n}(\alpha, x) \right\} \leq \alpha, \quad \text{and}
$$

$$
\mathbb{P}\left\{ \frac{1}{n} \sum_{i=1}^{n} \|f^*(x^i) - \hat{f}_n(x^i)\|^p > \kappa_{p,n}(\alpha, x) \right\} \leq \alpha.
$$

Example: holds for Wasserstein order $p = 2$ and

- OLS, Lasso with $\kappa_{2,n}^2(\alpha, x) = O(n^{-1} \log(\alpha^{-1}))$
- CART, RF with $\kappa_{2,n}^2(\alpha, x) = O(n^{-1} \log(\alpha^{-1}))^{O(1)}/d_x$
Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level $\alpha \in (0, 1)$, there exists a constant $\kappa_{p,n}(\alpha, x) > 0$ such that the regression procedure satisfies

$$
\mathbb{P}\{\|f^*(x) - \hat{f}_n(x)\|^p > \kappa_{p,n}^p(\alpha, x)\} \leq \alpha,
$$

and

$$
\mathbb{P}\left\{\frac{1}{n} \sum_{i=1}^n \|f^*(x^i) - \hat{f}_n(x^i)\|^p > \kappa_{p,n}^p(\alpha, x)\right\} \leq \alpha.
$$
Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level $\alpha \in (0, 1)$, there exists a constant $\kappa_{p, n}(\alpha, x) > 0$ such that the regression procedure satisfies

$$
\mathbb{P}\{ \| f^*(x) - \hat{f}_n(x) \|^p > \kappa_{p, n}^p(\alpha, x) \} \leq \alpha, \quad \text{and}
$$

$$
\mathbb{P}\left\{ \frac{1}{n} \sum_{i=1}^{n} \| f^*(x^i) - \hat{f}_n(x^i) \|^p > \kappa_{p, n}^p(\alpha, x) \right\} \leq \alpha.
$$

Given covariate realization x and risk level $\alpha \in (0, 1)$, use

$$
\zeta_n(\alpha, x) := 2\kappa_{p, n}(\frac{\alpha}{4}, x) + \bar{\kappa}_{p, n}(\frac{\alpha}{2})
$$

as the radius of the Wasserstein ambiguity set, where

$$
\bar{\kappa}_{p, n}(\frac{\alpha}{2}) = \text{traditional Wasserstein DRO radius that is used if we know } f^* \text{ (Kuhn et al., 2019)}
$$
Towards Convergence Theory for Wasserstein ER-DRO

Assumption: For any risk level \(\alpha \in (0, 1) \), there exists a constant \(\kappa_{p,n}(\alpha, x) > 0 \) such that the regression procedure satisfies

\[
P\{ \| f^*(x) - \hat{f}_n(x) \|^p > \kappa_{p,n}^p(\alpha, x) \} \leq \alpha, \quad \text{and} \quad
\]

\[
P\left\{ \frac{1}{n} \sum_{i=1}^{n} \| f^*(x^i) - \hat{f}_n(x^i) \|^p > \kappa_{p,n}^p(\alpha, x) \right\} \leq \alpha.
\]

Given covariate realization \(x \) and risk level \(\alpha \in (0, 1) \), use

\[
\zeta_n(\alpha, x) := 2 \kappa_{p,n}(\alpha, x) + \bar{\kappa}_{p,n}(\alpha)
\]

as the radius of the Wasserstein ambiguity set, where

\[
\bar{\kappa}_{p,n}(\alpha) = \text{traditional Wasserstein DRO radius that is used if we know } f^* \quad \text{(Kuhn et al., 2019)}
\]

Radius guarantees that \(P \{ d_W(\hat{P}_n^{ER}(x), P_{Y|X=x}) > \zeta_n(\alpha, x) \} \leq \alpha \)
Flavor of Wasserstein ER-DRO Results

Informal Theorem (Finite Sample Certificate Guarantee)

For the above choice of the Wasserstein radius $\zeta_n(\alpha, x)$, the solution $\hat{z}_n^{DRO}(x)$ and the optimal value $\hat{v}_n^{DRO}(x)$ satisfy

$$
\mathbb{P} \left\{ \mathbb{E}_\varepsilon \left[c(\hat{z}_n^{DRO}(x), f^*(x) + \varepsilon) \right] \leq \hat{v}_n^{DRO}(x) \right\} \geq 1 - \alpha
$$

Informal Theorem (Rate of Convergence)

Suppose there is a sequence of risk levels $\{\alpha_n\} \subset (0, 1)$ such that

$$
\sum_{n} \alpha_n < +\infty
$$

and the radius satisfies $\lim_{n \to \infty} \zeta_n(\alpha_n, x) = 0$. Then

the sequence $\{\hat{z}_n^{DRO}(x)\}$ of solutions satisfies

$$
\mathbb{E}_\varepsilon \left[c(\hat{z}_n^{DRO}(x), f^*(x) + \varepsilon) \right] = v^*(x) + O_p(\zeta_n(\alpha_n, x))
$$
In Informal Theorem (Finite Sample Certificate Guarantee)

For the above choice of the Wasserstein radius $\zeta_n(\alpha, x)$, the solution $\hat{z}_n^{DRO}(x)$ and the optimal value $\hat{v}_n^{DRO}(x)$ satisfy

$$\mathbb{P}\left\{ \mathbb{E}_{\varepsilon}\left[c(\hat{z}_n^{DRO}(x), f^*(x) + \varepsilon) \right] \leq \hat{v}_n^{DRO}(x) \right\} \geq 1 - \alpha$$

In Informal Theorem (Rate of Convergence)

Suppose there is a sequence of risk levels $\{\alpha_n\} \subset (0, 1)$ such that $\sum_n \alpha_n < +\infty$ and the radius satisfies $\lim_{n \to \infty} \zeta_n(\alpha_n, x) = 0$. Then the sequence $\{\hat{z}_n^{DRO}(x)\}$ of solutions satisfies

$$\mathbb{E}_{\varepsilon}\left[c(\hat{z}_n^{DRO}(x), f^*(x) + \varepsilon) \right] = v^*(x) + O_p(\zeta_n(\alpha_n, x))$$
Choosing the Wasserstein Radius in Practice

- Theoretical Wasserstein radius: involves unknown constants and is typically conservative

- Use cross-validation to specify the radius $\zeta_n(x)$
 - **Approach 1**: Ignore covariate information altogether while choosing ζ_n
 - **Approach 2**: Use the data D_n to choose ζ_n independently of the covariate realization $X = x$
 - **Approach 3**: Use both the data D_n and the covariate realization $X = x$ to choose the radius $\zeta_n(x)$

- Approach 3 is more data intensive than Approaches 1 & 2
Numerical Study: Mean-Risk Portfolio Optimization

- Consider instance with 10 assets
- Uncertain returns Y generated according to
 \[
 Y_j = \nu_j^* + \sum_{l=1}^{3} \mu_{jl}^* (X_l)^\theta + \bar{\epsilon}_j + \omega, \quad \forall j \in \{1, \ldots, 10\},
 \]
 where $\bar{\epsilon}_j \sim \mathcal{N}(0, 0.02j)$, $\omega \sim \mathcal{N}(0, 0.02)$, $\theta \in \{0.5, 1, 2\}$, $\text{dim}(X) \in \{10, 100\}$
Numerical Study: Mean-Risk Portfolio Optimization

• Consider instance with 10 assets

• Uncertain returns \(Y \) generated according to

\[
Y_j = \nu_j^* + \sum_{l=1}^{3} \mu_{jl}^* (X_l)^{\theta} + \bar{\epsilon}_j + \omega, \quad \forall j \in \{1, \ldots, 10\},
\]

where \(\bar{\epsilon}_j \sim \mathcal{N}(0, 0.02j) \), \(\omega \sim \mathcal{N}(0, 0.02) \), \(\theta \in \{0.5, 1, 2\} \), \(\text{dim}(X) \in \{10, 100\} \)

• Fit linear model with OLS/Lasso regression (even when \(\theta \neq 1 \))

\[
Y_j = \nu_j + \sum_{l=1}^{\text{dim}(X)} \mu_{jl} X_l + \eta_j, \quad \forall j \in \{1, \ldots, 10\},
\]

where \(\eta_j \) are zero-mean errors

• Estimate optimality gap of solutions \(\hat{z}^{ER}_n(x) \) and \(\hat{z}^{DRO}_n(x) \)
Results with OLS and Correct Model Class \((\theta = 1)\)

\(I^*\): Ideal Wasserstein radius (only for benchmarking)

\(1\) & \(2\): Wasserstein radius specified using Approaches 1 & 2

\(E\): ER-SAA + OLS
Results with OLS and Correct Model Class ($\theta = 1$)

I^*: Ideal Wasserstein radius (only for benchmarking)

1 & 2: Wasserstein radius specified using Approaches 1 & 2

E: ER-SAA + OLS

Lower y-axis value \implies closer to optimal
Results with OLS and Correct Model Class ($\theta = 1$)

I*: Ideal Wasserstein radius (only for benchmarking)
1 & 2: Wasserstein radius specified using Approaches 1 & 2
E: ER-SAA + OLS

Lower y-axis value \implies closer to optimal

Boxes: 25, 50, and 75 percentiles of upper confidence bounds
Whiskers: 2 and 98 percentiles
Sample sizes: $\{1.5, 2, 3, 5\} \times (\text{dim}(X) + 1)$
Results with OLS and Misspecified Model Class ($\theta \neq 1$)

$\theta = 0.5$

$d_x = 10$

$n = 16$ $n = 22$ $n = 33$ $n = 55$

$\theta = 2$

$d_x = 100$

$n = 151$ $n = 202$ $n = 303$ $n = 505$
Comparison with J-SAA for $d_x = 100$

J: J-SAA + OLS

3 & 2: Wasserstein radius specified using Approaches 3 & 2

E: ER-SAA + OLS

Lower y-axis value \implies closer to optimal

Boxes: 25, 50, and 75 percentiles of upper confidence bounds

Whiskers: 2 and 98 percentiles

Sample sizes: $\{1.3, 1.5, 2, 3\} \times (\text{dim}(X) + 1)$
Modularity Benefit for $d_x = 100$: Bring on Lasso

W: Wasserstein radius for ER-DRO + Lasso using Approach 2

E: ER-SAA + Lasso

Lower y-axis value \implies closer to optimal

Boxes: 25, 50, and 75 percentiles of upper confidence bounds
Whiskers: 2 and 98 percentiles
Sample sizes: $\{0.5, 0.8, 1.2, 1.5\} \times (\text{dim}(X) + 1)$
Outline

1. Introduction and Motivation
2. SAA with Covariate Information
3. DRO with Covariate Information
4. Extensions
Handling Heteroscedastic Errors

arXiv:2101.03139

- **Key assumption thus far**: true model is $Y = f^*(X) + \varepsilon$ with errors ε independent of covariates X

- **Assumption may be violated for some applications**
 - Example: variability of product demands/wind generators can depend on seasonality/location

- **Relaxed assumption**: $Y = f^*(X) + Q^*(X)\varepsilon$ with X, ε indep.
 - Estimate f^* and Q^* \implies estimate samples of ε
 - Theoretical results for ER-SAA and ER-DRO readily generalize
Multistage Stochastic Optimization

- Stochastic process $\{\xi_t\}$ and i.i.d. errors $\{\varepsilon_t\}$ satisfying

$$\xi_t = m^*_t(\xi_{t-1}) + \varepsilon_t, \quad \forall t \in \mathbb{Z}$$

- Given n historical observations of the stochastic process, estimate m^*_t by $\hat{m}_{t,n}$ and compute empirical residuals $\{\hat{\varepsilon}_n^i\}$

- Given ξ_{t-1}, use $\{\hat{m}_{t,n}(\xi_{t-1}) + \hat{\varepsilon}_n^i\}$ as scenarios for stage t

- Tailored convergence analysis required since same empirical errors used in each time stage

K., Ho-Nguyen, and Luedtke. Multistage stochastic optimization given time series data

Rohit Kannan
Residuals-based DRO with Covariate Information
April 8, 2021
Concluding Remarks

Empirical residuals formulations: A modular approach to using covariate information in optimization

- Converges under appropriate assumptions on prediction and optimization models
- Trade-off in choosing prediction model class: using a misspecified model can lead to better results with limited data
- Preprints on Optimization Online and arXiv
Concluding Remarks

Empirical residuals formulations: A modular approach to using covariate information in optimization

- Converges under appropriate assumptions on prediction and optimization models
- Trade-off in choosing prediction model class: using a misspecified model can lead to better results with limited data
- Preprints on Optimization Online and arXiv

Future research directions

- Formulations with stochastic constraints, discrete recourse decisions; robust multistage optimization
- Application to energy systems optimization

Asymptotic Optimality of ER-SAA Solutions

Assumption: The regression procedure satisfies

- Pointwise error consistency: \(\hat{f}_n(x) \xrightarrow{P} f^*(x) \) for a.e. \(x \)
- Mean-squared estimation error consistency:

\[
\frac{1}{n} \sum_{i=1}^{n} \| f^*(x^i) - \hat{f}_n(x^i) \|^2 \xrightarrow{P} 0.
\]

Informal Theorem (Asymptotic Optimality)

Under the above assumptions\(^\dagger\), the ER-SAA solution \(\hat{z}_n^{ER}(x) \) is asymptotically optimal for a.e. \(x \), i.e.,

\[
\mathbb{E}_\varepsilon \left[c(\hat{z}_n^{ER}(x), f^*(x) + \varepsilon) \right] \xrightarrow{P} v^*(x)
\]

\(^\dagger\)Plus some mild standard assumptions on the true conditional SP
Rate of Convergence of ER-SAA Solutions

Assumption: There is a constant $r \in (0, 1]$ such that the regression procedure satisfies

- Pointwise error rate: $\|f^*(x) - \hat{f}_n(x)\|^2 = O_p(n^{-r})$
- Mean-squared estimation error rate:

\[
\frac{1}{n} \sum_{i=1}^{n} \|f^*(x^i) - \hat{f}_n(x^i)\|^2 = O_p(n^{-r})
\]

- OLS regression, Lasso satisfy assumption with $r = 1$
- CART, RF regression satisfy assumption with $r = \frac{O(1)}{\text{dim}(X)}$

Informal Theorem (Rate of Convergence)

Under the above assumptions, ER-SAA solution $\hat{z}_{n}^{ER}(x)$ satisfies

\[
\mathbb{E}_\varepsilon \left[c(\hat{z}_{n}^{ER}(x), f^*(x) + \varepsilon) \right] = v^*(x) + O_p(n^{-r/2})
\]
Finite Sample Guarantees for ER-SAA Solutions

Define

\[\hat{S}_n^{ER}(x) := \text{set of optimal solutions to ER-SAA} \]

\[S^\kappa(x) := \text{set of } \kappa\text{-optimal solutions to the true conditional SP,} \]

i.e., points in \(\mathcal{Z} \) with objective value \(\leq v^*(x) + \kappa \)

Assumption: The errors \(\varepsilon \) are sub-Gaussian (light tail distribution)

Given: target optimality gap \(\kappa > 0 \), unreliability level \(\delta \in (0, 1) \)

Goal: Estimate sample size \(n \) required for

\[\mathbb{P} \left\{ \hat{S}_n^{ER}(x) \subseteq S^\kappa(x) \right\} \geq 1 - \delta, \]

i.e., with probability \(\geq 1 - \delta \), optimal solutions of ER-SAA are \(\kappa \)-optimal to the true conditional SP
Finite Sample Guarantees for ER-SAA Solutions

Estimate sample size n required for $\mathbb{P}\left\{ \hat{S}_n^{ER}(x) \subseteq S_\kappa(x) \right\} \geq 1 - \delta$

- If f^* is linear and we use OLS regression, then require
 \[n \geq \frac{O(1)}{\kappa^2} \left[d_z \log \left(\frac{O(1)}{\kappa} \right) + d_y \log \left(\frac{O(1)}{\delta} \right) + d_x d_y \right] \]

- If f^* is s-sparse linear and we use the Lasso, then require
 \[n \geq \frac{O(1)}{\kappa^2} \left[d_z \log \left(\frac{O(1)}{\kappa} \right) + s d_y \log \left(\frac{O(1)}{\delta} \right) + s \log(d_x)d_y \right] \]

- If f^* is Lipschitz and we use kNN regression, then require
 \[n \geq \frac{O(1)d_z}{\kappa^2} \log \left(\frac{O(1)}{\kappa} \right) + \left(\frac{O(1)d_y}{\kappa^2} \right)^{d_x} \left[d_x \log \left(\frac{O(1)d_x d_y}{\kappa^2} \right) + \log \left(\frac{O(1)}{\delta} \right) \right] \]
Numerical Study: Optimal Resource Allocation

\[
\min_{z \geq 0} \quad c^T z + \mathbb{E}_Y [Q(z, Y)]
\]

▶ \(z_i \): quantity of resource \(i \in \mathcal{I} \) (order before demands realized)

▶ \(Y_j \): uncertain demand of customer type \(j \in \mathcal{J} \)

\[
Q(z, Y) := \min_{w, v \geq 0} \quad d^T w \\
\text{s.t.} \quad \sum_{j \in \mathcal{J}} v_{ij} \leq z_i, \quad \forall i \in \mathcal{I}, \\
\sum_{i \in \mathcal{I}} \mu_{ij} v_{ij} + w_j \geq Y_j, \quad \forall j \in \mathcal{J}.
\]

▶ \(v_{ij} \): amount of resource \(i \) allocated to customer type \(j \)

▶ \(w_j \): amount of customer type \(j \) demand that is not met

▶ \(\mu_{ij} \geq 0 \): service rate of resource \(i \) for customer type \(j \)
Numerical Study: Optimal Resource Allocation

- Meet demands of 30 customer types for 20 resources

- Uncertain demands Y generated according to

$$Y_j = \alpha^*_j + \sum_{l=1}^{3} \beta^*_j (X_l)^\theta + \varepsilon_j, \quad \forall j \in \{1, \cdots, 30\},$$

where $\varepsilon_j \sim \mathcal{N}(0, \sigma^2_j)$, $\theta \in \{0.5, 1, 2\}$, dim$(X) \in \{10, 100\}$

- Fit linear model with OLS/Lasso regression (even when $\theta \neq 1$)

$$Y_j = \alpha_j + \sum_{l=1}^{\text{dim}(X)} \beta_{jl} X_l + \eta_j, \quad \forall j \in \{1, \cdots, 30\},$$

where η_j are zero-mean errors

- Estimate optimality gap of solutions $\hat{z}^{ER}_n(x)$ and $\hat{z}^J_n(x)$
Results with Correct Model Class ($\theta = 1$)

Red (E): ER-SAA + OLS

Black (k): Reweighted SAA with kNN (Bertsimas and Kallus, 2020)

Lower y-axis value \implies closer to optimal

Boxes: 25, 50, and 75 percentiles of upper confidence bounds
Whiskers: 2 and 98 percentiles
Sample sizes: $\{1.5, 2, 5, 20, 100\} \times (\text{dim}(X) + 1)$
Results with Misspecified Model Class ($\theta \neq 1$)

Red (E): ER-SAA + OLS, Black (k): Reweighted SAA with kNN

$\theta = 0.5$

$\theta = 2$
Advantage of J-SAA with Limited Data ($\theta = 1$)

Red (E): ER-SAA + OLS, Green (J): J-SAA + OLS

Lower y-axis value \implies closer to optimal

Boxes: 25, 50, and 75 percentiles of upper confidence bounds
Whiskers: 2 and 98 percentiles
Sample sizes: $\{1.1, 1.2, 1.5, 2, 3\} \times (\dim(X) + 1)$
Modularity Benefit: Bring on Lasso ($\theta = 1$)

Red (E): ER-SAA + OLS, Blue (L): ER-SAA + Lasso

Lower y-axis value \implies closer to optimal

Boxes: 25, 50, and 75 percentiles of upper confidence bounds
Whiskers: 2 and 98 percentiles
Sample sizes: $\{1.1, 1.2, 1.5, 2, 3\} \times (\dim(X) + 1)$
Lasso Results with Misspecified Model Class ($\theta \neq 1$)

Red (E): ER-SAA + OLS, \hspace{1cm} Blue (L): ER-SAA + Lasso

\[d_x = 10 \hspace{2cm} d_x = 100 \]

\[\theta = 0.5 \]

\[\theta = 2 \]